在运营中,为什么文本分析远比数值型分析重要?一个实际案例,五点分析(下)

拉链
拉链 这家伙很懒,还没有设置简介...

0 人点赞了该文章 · 23 浏览

 在运营中,为什么文本分析远比数值型分析重要?一个实际案例,五点分析(下)

本文是《数据分析中,文本分析远比数值型分析重要!》的下篇,以一个实际案例来聊聊文本分析在实际运营中如何落地。行为脉络如下:先简要讲述文本分析的分支—情绪分析的基本原理,然后以亚马逊的Kindle Voyage的用户评论作为“情绪分析”的实操分析,最后罗列了几个实用的文本分析工具,以期对大家有所帮助。

在大数据时代还未来临前,企业一般根据自身积累的历史数据,以及一线运营人员的主观经验来猜测用户接下来的反应,以此作为制定后续营销、运营方案的依据。

然而,在这个VUCA时代(宝洁公司首席运营官Robert McDonald借用一个军事术语来描述这一新的商业世界格局,即volatility,易变性;uncertainty,不确定性;complexity,复杂性;ambiguity,模糊性),商业场景的变化速度和复杂程度今非昔比,用户的喜好也容易受外界“场景”的影响,就如“孩子的脸”和“六月的天”一样善变,先前积累的经验往往不足以作为企业下一阶段进行市场谋划和运营的依据。

VUCA时代的特征

根据《数据运营|数据分析中,文本分析远比数值型分析重要!(上)》的分析,我们可知,大数据文本分析正是应对上述困局的一剂良方。

(一)

接下来,我们将从理论到实践,聊聊文本分析是如何应用在商业实践中的。

1.文本分析重构产品的营销和运营流程

借助基于大数据的文本分析,我们可以对用户行为和想法进行科学分析,使用户洞察由原来的主观“猜测”转变为以数据为驱动的精准预测。在新产品上市前,或者是小规模投放市场后,在社交媒体上对粉丝和潜在用户的言论进行收集,对其进行文本分析,知道他们喜欢产品的哪些方面,对哪些方面不太满意,以及他们对产品的其他期望,从而敏捷、快速、准确的对用户的反馈做出积极的回应。

由此可见,有文本分析介入的产品运营流程被“重构”了,如下图所示。

有文本分析参与的运营分析逻辑流程

其中,对用户言论进行文本分析的“精髓”在于对提炼出的文本数据的所表达出的“情绪”的解读,也就是用户言论的情绪分析。

在理解文本分析语境下的“情绪分析”前,我们先看看它的一般含义。

2.大数据文本分析中的“情绪分析”是什么?

先说“情绪”。“情绪”这个词,在心理学中的一般含义是:对一系列主观认知经验的通称,是多种感觉、思想和行为综合产生的心理和生理状态。我们日常中最普遍的情绪就是喜、怒、忧、思、悲、恐、惊,也就是中医中所说的“七情”。

那么,“情绪分析”就是有效且准确的识别这些具体的情绪,根据得到的结果,进一步对产生于自身或者他人的情绪采取合理的应对措施(如疏导自身消极情绪、理解他人的反常行为等)。

与此类似,基于大数据文本数据的“情绪分析”,也被业界称为“观点挖掘”,它利用多样化、海量的社会化媒体做客服,借助数量庞大的社交网络平衡语料和新闻平衡语料的机器学习模型,对所获取文本中的情感倾向和评价对象进行提取,使运营者更全面、更深入地了解用户的“心声”,掌握用户对于产品的喜好程度,及用户视角下的产品优缺点。

值得注意的是,基于大数据文本的情绪分析在于深度分析评论的意义(评论的是事物的哪些方面)以及附带的情绪倾向(是“褒”是“贬”,还是“中立”),而不是评论本身在说的文字。

下面,笔者将以基于亚马逊上Kindle Voyage商品评论的文本数据为例,来聊聊文本数据的情绪分析在商业实践中的运用。

3.“情绪分析”在商业实践中的正确打开方式

现在,笔者以亚马逊官网2014年9月份在其平台上发售的Kindle Voyage电子书阅读器珍藏限量为例,对其商品评论区的用户评论进行基于文本数据的“情绪分析”,看看我们能从中得到哪些有价值的insight,以便优化我们的运营工作。

亚马逊官网上Kindle Voyage电子书阅读器的商品详情页

分析时间段:2014.12.01~2015.06.23 数据

发布于 2023-01-16 01:58

免责声明:

本文由 拉链 原创或收集发布于 火鲤鱼 ,著作权归作者所有,如有侵权可联系本站删除。

火鲤鱼 © 2025 专注小微企业服务 冀ICP备09002609号-8