关于用户流失,数据分析可以挽回一线生机

zpc9814
zpc9814 这家伙很懒,还没有设置简介...

0 人点赞了该文章 · 77 浏览

 关于用户流失,数据分析可以挽回一线生机

上图对整体的流失情况进行一个总体的监控,关注点在于流失率是否稳定、新用户流失与老用户流失占比。一般来说,新用户流失率比较高,而老用户流失的严重性更大一些,当发现老用户流失率较高的情况,应该针对流失用户进行更近一步的分析,要对流失用户进行聚类,另外关联流失用户的行为日志,将分析结果最终落地到产品。私以为,只有从产品的角度降低老用户的流失率才是靠谱的,其他手段都是治标不治本。

关于新用户的流失,今天跟朋友聊到,一款产品或者游戏的运营,避免不了新用户的流失率是越来越高的。一款新的产品刚上线时,用户质量一般比较高,而当一款产品运营一段时间后,所谓的新用户有一定程度上是运营人员强行拉过来的,质量会有所下降。so,还是重视老用户的存留,and,关于渠道的价值评估也是一定要加上存留率了如下图(前面写的仅仅有转化率、roi、流量的相关的渠道价值评估,关于渠道的价值,应该综合更多维度分析)。

另外可以针对流失的用户类型进行近一步的分类如下,来为运营人员分析用户流失分析提供初步假设:

当然,上面所描述的都是最基本的监控性报表,对于流失而言,更多的是深度的分析,需要对潜在流失用户进行预测、对流失原因进行分析,各参数与用户流失的相关性分析等。这些就需要考虑具体的业务场景进行建模分析了。

有朋友提醒,渠道是无处不在的,贯穿于整个运营体系之中,存留的曲线图也需要按照渠道来进行细分对比。例如:当发现次日存留率较低,点击图标进入下一层,罗列出所有渠道的次日存留率,来达到对存留更全面的认识,也是对渠道价值的监控。感谢提出建议的朋友。

 

本文来源于运营派合作媒体@人人都是产品经理,作者@jiago王

发布于 2023-01-14 21:44

免责声明:

本文由 zpc9814 原创或收集发布于 火鲤鱼 ,著作权归作者所有,如有侵权可联系本站删除。

火鲤鱼 © 2024 专注小微企业服务 冀ICP备09002609号-8