一份完整的运营方案包括哪些(分享运营的工作流程与规范)
相信很多做运营的同学在工作过程中遇到自己的想法、方案,在经过实施检验后效果不理想、工作效率低、方案内容质量不高,缺乏数据支撑和依据等诸多情况。根据我思考和经验总结,认为要改变这类情况的局面首先需要从制定运营工作流程和工作规范着手。
为什么要制定运营工作流程?
一个科学的工作方法和管理方式能够有效的提高组织的工作效率,提升组织成员的工作意识、规范意识,提升个人能力认知,所有工作必须按流程走,形成组织共识,这样才能尽可能的避免工作中决策失误,拍脑袋做事的思维.
下面我就个人工作经验与大家分享运营的工作流程
数据指标预警监控
在预警监控数据指标之前,我们需要先梳理运营需要的数据指标,要用到哪些指标、看哪些指标,哪些是核心指标、哪些是次要指标、哪些是过程指标等等。有了完善的数据指标体系,接下来才能做好指标的预警监控,我们才能发现问题、异常数据。
数据分析
首先数据分析不分角色,无论是数据分析师还是用户运营、活动运营也好,都可以针对某主题自行数据分析,当下做运营工作,数据分析能力是必备技能之一,良好的数据思维是必要条件,数据分析不是盲目分析,也不是一两句话总结就可以形成一个数据分析报告,需对主题的过程数据指标、关联指标、结果性指标、过程指标,从事件属性、指标维度多方向的分析。我们要清楚为什么做数据分析,怎么做好数据分析?以数据驱动业务为目标,做好数据分析可分为五个方面:
· 数据采集与规划:根据运营需求对业务场景设计指标体系、事件埋点,通过数据分析补充采集缺失的数据、优化不可用的数据指标、事件、属性。
· 分析异常数据:根据数据指标的因果关系、数据表现特征、数据指标细分进行分析。例如网约车订单量某天减少了,按照因果关联我们需要看乘客数据和司机数据,根据经验首先要看的是订单取消率,如果订单取消率比较高,那我们要看司机数据,是不是因为接单司机减少,活跃司机量少导致,还需要看具体是哪些城市的司机量减少,那个标签司机量减少等;如果订单取消率较低,那我们需要看乘客数据,是不是下单乘客数减少、活跃乘客量减少、什么标签乘客量减少等。常用的数据分析法有因果分析、鱼刺分析、事件分析、漏斗分析、留存分析、分布分析、间隔分析、用户路径分析、行为分析、用户生命周期价值分析、属性分析等。
· 分析产品迭代效果:通常来讲分析产品迭代效果大体上分为量和转化两种评估方向。比方说两种不同的信息流广告投放注册送落地页看哪种效果更好,首先在相同渠道、相同环境、相同人群的情况下,我们不仅需要看信息流广告的曝光量、点击量、注册量,还需要看广告的曝光点击转化率、注册转化率。
· 分析业务增长突破点:首先要明确目标,确定目标的关键指标,其次找到影响目标/关键指标的关键因素,然后再进行原因分析,最后是优化方案。例如目标为100W日活用户,日活的关键指标有留存率、新用户注册量、影响此关键指标的因素有价值用户分层标签人群的留存率、引入期用户留存率、成长期用户留存率、成熟期用户留存率、各个城市维度的新注册用户量、推荐注册用户量等,根据这些关键因素建立好相应的数据预警监控。原因分析时我们需要看数据指标周期波动,上升或者下降的原因有什么,并给出优化建议,最后由运营同学输出相应的优化方案。
· 分析方法论沉淀:基于分析报告,输出更通用的分析思路方法及实施规范,形成数据分析知识库,以便组织内部复用。
数据分析报告输出
在做数据分析之前需要明确分析主题、目的、背景,有效的输出分析报告,针对不太主题选择不同类型分析报告模板,分析报告切记根据阅读对象,报告内容可读性要强。常用的分析报告类型大致分为三种:日常数据分析报告、专题分析报告、研究类分析报告。工作中主要用到前两种分析报告,以下主要说明这两种数据分析报告的特点。
日常数据分析报告要求时效性较高、包含核心指标、反应业务数据的变化情况和影响因素,要求能快速得出分析结论。此类报告一般以日报、周报、月报、季报、年度报告的形式呈现
,日常数据分析报告可以借助智能预警分析快速定位异常、发现问题,找到关键因素。例如下单量指标下降明显,那么我们借助智能预警分析,从数据监控中直接找到是哪些关联指标或者哪些维度、哪些群体用户影响了下单量的降低。
专题分析报告的特点是明确分析对象/主题,深度分析,找到影响业务突破的关键性问题或方向。例如以用户增长为主题的分析,那么分析报告中应该包含所有与用户相关的所有指标(用户拉新、用户留存、用户活跃、用户转化、用户流失等),对其进行数据分析,并得出结论和建议。