景气预测法案例分析

westwind
westwind 这家伙很懒,还没有设置简介...

0 人点赞了该文章 · 28 浏览

 景气预测法案例分析

案例一:四川省产成品存货景气预测实证分析

综合利用传统统计数据和企业景气调查数据,建立产成品存货指标的ARCH—GMDH组合预测模型,预测四川省2005年3季度至2006年1季度产成品存货量,并根据预测结果来分析产成品存货未来的景气变动趋势。同时分别利用传统统计数据和企业景气调查数据建立预测模型,对比分析不同类模型的预测效果。

  一、历史数据分析。

  建模所需数据来自四川省企业景气调查数据以及传统统计数据,数据样本为2002.1~2005.2共14个季度的数据,样本容量相对较少。根据原始的景气调查和统计数据,提取了59个变量x_1,K,X_59构成变量集,再从中选择一系列变量建立产成品存货的预测模型。

  产成品存货是一个关联性非常强的指标。首先,产成品存货量在一定程度上反映了经济的冷热程度。

  产成品存货量较小甚至出现未交订货,说明当前市场十分活跃,经济增长较快。其次,产成品存货量还可以反映当前的就业形势。若产成品存货量较小,为了保证满足市场需求,企业往往会扩大自身产能,对劳动力的需求也随之增加。最后,它直接影响产品销售收入与销售利润。因此,预测未来时点产成品存货量的值,判断其发展走势,具有十分重要的现实意义。

  根据产成品存货指标的历史时间序列数据,可以得到它的走势(见上图)。图中可以看出,产成品存货量的发展走势具有一定的周期性,周期一般为4个季度即一年,目前它正处于第四个周期。同时,产成品存货总体呈现逐渐上升的发展趋势。

  二、产成品存货与其它变量的相关性分析

  利用SPSS软件,对所有变量进行相关分析,得到59×59的相关系数矩阵。根据相关系数矩阵找到与产成品存货量显著相关的8个指标,见下表。

  与产成品存货显著相关的指标

指标名称产销率资产流动负债工业产品工业劳力流动企业景气企业家 负债率平均余额订货需求资金指数信心指数 与产成品存货的相关系数-0.5570.5690.5450.664-0.662-0.565-0.664-0.786 统计量(双尾)0.0390.0440.010.010.010.0350.010.001

  表1的8个变量中,前面3个变量属于传统统计指标,后面5个属于景气调查指标,这也充分表明将企业景气调查数据和传统统计数据相结合的必要性。

  三、基于ARCH-GMDH的产成品存货组合预测

  首先建立四川省产成品存货的ARCH预测模型。

  在建立ARCH模型之前,必须对各变量进行分析。通过反复试验,逐步剔除模型中不显著的变量,得到最终的预测模型。根据模型预测2005年3季度到2006年1季度产成品存货量分别为339.27亿元、327.63亿元、337.82亿元。而2005年3季度产成品存货量的实际值为339.62亿元,预测误差为0.1%,可见模型的预测精度是非常高的。

  其次,借助计算机建立GMDH自回归模型,根据模型预测2005年3季度到2006年1季度产成品存货量的预测值分别为339.19亿元、326.27亿元、351.57亿元。其中,2005年3季度产成品存货的预测误差为0.13%。

  最后,建立ARCH模型和GMDH自回归模型的组合预测模型。使用权系数组合预测法,经过反复尝试,得到如下的组合预测模型:Y=-5548.05+0.998*ARCH+0.00395*GMDH  (1)

  根据模型(1)得到四川省2005年3季度至2006年1季度产成品存货量的组合预测结果分别为339.38亿元、327.71亿元、337.98亿元,其预测走势见图将2005年3季度产成品存货量实际值与预测值比较,其预测误差仅为0.071%。由此可见,组合预测效果比单一模型的预测效果都要好,而且预测精度更高。

  上图可以看出,2005年4季度产成品存货量与3季度相比有小幅下降,而2006年1季度的产成品存货量相对于上一季度又有所增加,这种发展趋势与ARCH模型和GMDH自回归模型的预测是一致的,其差异只在于变化幅度的不同。同时,从预测结果来看,2005年4季度经济增长比较稳定,产成品存货量将有所减少,但预计2006年1季度的经济增长将有小幅下降,从而导致产成品存货量增加。

  四、不同类型模型预测效果比较

  从上面的分析可以看出,ARCH模型的预测结果比GMDH自回归预测更接近实际值。因此文章选用ARCH模型,分别建立基于传统统计数据和基于企业景气调查数据的产成品存货预测,将预测结果与4.3节中综合利用两类数据得到的预测结果进行比较,如表2所示。

  由表2可知,综合利用两类数据建立的景气预测模型的拟合效果最好,拟合优度最高,达到0.99。

  一方面,从对2004年3季度到2005年2季度产成品存货的具体拟合值来看,综合利用两类数据的景气预测模型的拟合误差明显小于单独使用传统统计数据或企业景气调查数据的两类模型。另一方面,在用不同类型模型预测2005年3季度的产成品存货值时,综合利用两类数据的景气预测模型的预测误差最小,仅为0.07%。

  结合有关专家对四川省产成品存货未来景气变动趋势的分析来看,综合利用两类数据的景气预测模型预测得到的产成品存货三个时点的景气变动趋势,跟其实际变动基本一致,且预测误差相对较小;而基于传统统计数据的产成品存货预测和基于企业景气调查数据的产成品存货预测均出现了较大偏差,随着预测时点的延长,其误差不断增大,且明显大于综合利用两类数据建立的ARCH—GMDH组合预测模型。这也表明了本文将传统统计数据和企业景气调查数据结合起来,综合利用两类数据建立景气预测模型的必要性和有效性。

发布于 2023-01-29 21:28

免责声明:

本文由 westwind 原创或收集发布于 火鲤鱼 ,著作权归作者所有,如有侵权可联系本站删除。

推荐内容

品牌的定义
品牌概述
品牌的由来
品牌特征
品牌的种类
品牌的作用
品牌在市场营销中的作用与意义 
网络营销的技术基础
网络营销的理论基础
网络营销的优势分析
火鲤鱼 © 2025 专注小微企业服务 冀ICP备09002609号-8