在备用操作模式期间提供有限防滑控制的制动系统的制作方法

大分享
大分享 这家伙很懒,还没有设置简介...

0 人点赞了该文章 · 75 浏览

本公开涉及用于载具的制动系统。更具体地,本公开涉及一种制动系统,其在备用操作模式期间采用有限防滑控制策略以节省储存在储能装置中的能量。

背景技术:

飞行器制动器在各种情况下使用。例如,飞行器制动器用于在沿着跑道着陆期间使飞行器减速。还可在诸如例如滑行、转向和停放的地面处理操作期间使用飞行器制动器。

液压飞行器制动系统包括在压力下储存液压制动液的蓄能器。蓄能器用作冗余压力源以及备用流体能量源。具体地,制动蓄能器主要用于在主动液压系统卸压之后提供持续液压压力,并且还在制动系统内失去液压压力的情况下或者在飞行器的液压动力系统变得失灵时用作备用能量源。然而,蓄能器仅能够储存有限量的液压制动液。因此,每次施加和释放制动压力,蓄能器的液压液位和压力耗尽。例如,一些蓄能器的尺寸适于提供仅足够用于施加约六次至八次制动的液压流体。此外,每次施加制动,蓄能器压力、蓄能器流体体积和最大制动压力均减小。一旦蓄能器变空,就无法再应用制动器来使飞行器的速度减小。

为了节约储存在蓄能器内的液压流体,当蓄能器正在用作备用流体能量源时,制动系统的一些功能可能不可用。例如,有时,制动系统可能仅使用踏板制动控制(即,飞行员的制动输入),而没有防滑控制。防滑控制通过短暂地减轻提供给轮子的液压压力来提供打滑保护,这使得轮子能够旋转并避免打滑。如果飞行器正沿着光滑表面(例如,结冰的跑道)行进,则省略防滑控制可能产生问题。另选地,在另一方法中,当蓄能器用作备用流体能量源时,制动系统仍可提供防滑控制。然而,如果由于打滑保护而过度释放制动器,这可能导致蓄能器相对快速地变空。

技术实现要素:

根据若干方面,公开了一种用于载具的制动系统。该制动系统包括:储能装置,其被配置为储存和释放能量;多个轮子;一个或更多个处理器,其在操作时联接到储能装置并与所述多个轮子电通信;以及存储器,其联接到所述一个或更多个处理器。存储器存储包括数据库和程序代码的数据,所述程序代码在由所述一个或更多个处理器执行时使得制动系统确定制动系统正在备用操作模式下操作。响应于确定制动系统正在备用操作模式下操作,使得制动系统计算多个轮子的动态滑移。还使得制动系统通过将动态滑移与多个轮子的目标滑移值进行比较来确定滑移误差,其中目标滑移值相对于多个轮子的理想滑移值偏移并导致制动系统的制动效率降低。还使得制动系统基于滑移误差来计算防滑命令,其中该防滑命令减小施加到多个轮子的制动压力量。

根据另一方面,公开了一种飞行器。该飞行器包括制动系统,该制动系统包括多个轮子和蓄能器,其中蓄能器被配置为作为加压液压制动液储存和释放流体能量。飞行器还包括在操作时联接到蓄能器并与多个轮子电通信的一个或更多个处理器以及联接到所述一个或更多个处理器的存储器。存储器存储包括数据库和程序代码的数据,该程序代码在由所述一个或更多个处理器执行时使得制动系统确定制动系统正在备用操作模式下操作,其中备用操作模式节省储存在蓄能器中的流体能量。响应于确定制动系统正在备用操作模式下操作,使得制动系统计算多个轮子的动态滑移。还使得制动系统通过将动态滑移与多个轮子的目标滑移值比较来确定滑移误差,其中目标滑移值相对于多个轮子的理想滑移值偏移并导致制动系统的制动效率降低。还使得制动系统基于滑移误差来计算防滑命令,其中防滑命令减小施加到多个轮子的制动压力量。

在另一方面,公开了一种在载具的制动系统的备用操作模式期间确定防滑命令的方法。制动系统包括多个轮子以及被配置为储存和释放能量的储能装置。该方法包括:由计算机确定制动系统正在备用操作模式下操作。响应于确定制动系统正在备用操作模式下操作,该方法包括:由计算机计算多个轮子的动态滑移。该方法还包括:通过将动态滑移与目标滑移值比较来确定滑移误差,其中与理想滑移值相比,目标滑移值小于理想滑移值并导致制动效率降低。最后,该方法包括:基于滑移误差来计算防滑命令,其中防滑命令减小施加到多个轮子的制动压力量。

已讨论的特征、功能和优点可在各种实施方式中独立实现,或者可在其它实施方式中组合,其进一步的细节可参考以下描述和附图看出。

附图说明

本文所描述的附图仅是为了例示,并非旨在以任何方式限制本公开的范围。

图1是根据示例性实施方式的包括蓄能器形式的储能装置的制动系统的示意图;

图2是根据示例性实施方式的当制动系统正在备用操作模式下操作时确定防滑命令的方法的框图;

图3是示出根据示例性实施方式的理想滑移点和目标滑移点的示例性mu-slip曲线;

图4是示出根据示例性实施方式的基于图2所示的系统确定防滑命令的方法的过程流程图;

图5是示出根据示例性实施方式的当制动系统正在备用模式下操作时确定防滑命令的替代方法的框图;

图6a是示出根据示例性实施方式的经历打滑状况的图5所示的观测轮的制动压力的曲线图;

图6b是示出根据示例性实施方式的观测轮的制动扭矩的曲线图;

图6c是示出根据示例性实施方式的与实际载具速度相比观测轮的轮速的曲线图;

图6d是根据示例性实施方式的经历打滑的观测轮的mu-slip曲线;

图7是示出根据示例性实施方式的确定制动压力的另一方法的过程流程图;

图8是根据示例性实施方式的图1的制动系统所使用的计算机系统的例示。

具体实施方式

本公开涉及一种用于载具的制动系统,其中该制动系统包括储能装置。在备用操作模式期间,储能装置用于向制动系统供应能量。该制动系统在备用操作模式期间节省储存在储能装置内的能量的量。具体地,制动系统的控制模块确定表示减小施加到载具的轮子的制动压力的防滑命令。基于轮子的动态滑移与轮子的目标滑移值之间的误差来计算防滑命令。目标滑移值相对于轮子的理想滑移值偏移,并导致制动系统的停止效率降低。然而,由于目标滑移导致施加到轮子的制动压力量减小,所以每次施加制动以减小载具的速度时制动系统消耗来自储能装置的较少能量。

以下描述本质上仅是示例性的,并非旨在限制本公开、应用或使用。

参照图1,示出具有制动系统18的载具10的示意图。制动系统18包括制动踏板命令20、控制模块22、多个轮子24(图1中仅示出一个轮子24)、阀26、单向或止回阀28、储能装置30、活塞缸组件32和制动层叠物34。控制模块22与制动踏板命令20和阀26电通信。当制动系统18正在备用操作模式(下面更详细地描述)下操作时,阀26将活塞缸组件32与储能装置30流体连接。储能装置30是被配置为当制动系统18需要时储存和释放能量的任何类型的装置。例如,在如所示的实施方式中,储能装置30是被配置为作为加压液压制动液储存和释放能量的蓄能器30a。当制动系统18失去有效液压动力时,储能装置30提供备用能量源。如下面说明的,当储能装置30用作备用能量源时,制动系统18限制制动系统18所采用的防滑控制以节省储存在储能装置30中的能量。

在如图1所示的非限制性实施方式中,制动系统18采用液压制动液并且储能装置30是蓄能器30a。蓄能器30a被配置为作为加压液压制动液储存和释放流体能量。蓄能器30a的一些示例包括(但不限于)压缩气体蓄能器(也称为气囊式蓄能器)或弹簧蓄能器。尽管图1示出采用液压制动液的制动系统18,但将理解,制动系统18不限于液压系统。例如,在另一实施方式中,制动系统18是电子制动系统。此外,储能装置30不限于蓄能器30a。相反,储能装置30包括被配置为储存和释放能量的任何类型的装置,例如(但不限于)电池、电容器或飞轮。

在一个实施方式中,载具10是包括液压制动系统18和蓄能器30a的飞行器182(见于图5)。然而,将理解,制动系统18也可用于在有限动力源(即,储能装置30)下操作的其它类型的载具中。还将理解,尽管图1仅示出单个制动系统18,但飞行器可实际包括多个制动系统18。例如,飞行器可包括与飞行器的左轮和右轮对应的单独制动系统。

制动系统18还包括供给压力导管40、返回压力导管42和制动管路导管44。供给压力导管40流体连接到止回阀28和储能装置30,并且制动管路导管44流体连接到活塞缸组件32。阀26被配置为将制动管路导管44与供给压力导管40或返回压力导管42流体连接。当阀26将供给压力导管40与制动管路导管44流体连接时,加压制动液被供应到活塞缸组件32。止回阀28防止制动液在与阀26相反的方向上流动。

制动层叠物34包括一个或更多个转子50和一个或更多个定子52,其中转子50与轮子24协调旋转。活塞缸组件32包括活塞54、缸56和偏置元件66,其中活塞54被配置为在缸56内以线性运动来回平移。在所示的实施方式中,偏置元件66是螺旋弹簧。当阀26将供给压力导管40与制动管路导管44流体连接时,加压制动液被供应到活塞缸组件32并使得活塞54克服偏置元件66所施加的偏置力。一旦活塞54克服偏置力,活塞54在缸56内在朝着制动层叠物34的方向上平移。活塞54继续朝着制动层叠物34行进,直至活塞54的端部60抵靠制动层叠物34并在制动层叠物34上施加压缩力。当制动层叠物34被压缩时,在转子50和定子52之间产生抵抗轮子24的旋转的摩擦力。

制动系统18还包括各自与控制模块22电通信的轮速传感器70、制动压力换能器72和蓄能器压力换能器74。轮速传感器70测量轮子24的旋转速度(称为轮速80)。制动压力换能器72测量制动管路导管44内的流体压力并生成比例电信号(称为制动压力信号82)。蓄能器压力换能器74测量储能装置30(即,蓄能器30a)的流体压力,并生成蓄能器压力信号(称为储能水平84)。这是因为蓄能器压力的减小指示储存在蓄能器30a内的能量的量减小。

控制模块22接收轮速80、制动压力信号82和储能水平84作为输入。控制模块22还从制动踏板命令20接收输入命令86。输入命令86表示制动系统18所请求的制动量。例如,如果制动踏板命令20是制动踏板,则操作者手动地踩下制动踏板以创建由控制模块22接收的输入命令86。控制模块22确定发送到阀26的制动压力命令88。制动压力命令88指示阀26增加或减小供应给制动系统18的流体压力。具体地,阀26将供给压力导管40和储能装置30流体连接到制动管路导管44,以增加供应给制动系统的流体压力。阀26将返回压力导管42流体连接到制动管路导管44,以减小供应给制动系统18的流体压力。例如,在一个非限制性实施方式中,阀26是伺服阀,制动压力命令88是毫安信号。

现在描述制动系统18的备用操作模式。具体地,当制动系统18经历主动动力的失去时,则控制模块22执行备用操作模式。具体地,控制模块22在操作时连接到储能装置30。在备用操作模式期间,控制模块22指示阀26将储能装置30流体连接到制动管路导管44。例如,如果制动系统18采用液压制动液,则在制动系统18内失去主动供给液压压力的情况下,蓄能器30a用作备用流体能量源。

将理解,储能装置30仅包含固定或有限量的能量(例如,液压制动液)。类似地,如果制动系统18是电制动系统,则电池可仅包含易于转换为电能的有限量的化学能量。所公开的备用操作模式通过指示制动系统18执行有限防滑控制策略来节省储存在储能装置30中的能量的量。具体地,备用操作模式限制供应给制动系统18的流体压力的动态改变,继而节省储存在储能装置30中的能量(即,液压制动液、化学能量等)的量。

图2是示出由控制模块22计算防滑命令90的一个方法的框图100。从轮速80推导防滑命令90。防滑命令90减小施加到多个轮子24的制动压力的量并在载具10停下来时提供防滑控制。然而,将理解,与传统防滑系统相比,防滑命令90提供减小量的防滑控制。返回到图2,框图100包括滑移计算块103、目标滑移块104、积分器增益ki、比例增益kp和积分器108。

参照图1和图2,一旦载具10的轮子24沿着表面旋转,控制模块22就动态地计算制动压力命令88。例如,如果载具10是飞行器,则一旦轮子24沿着跑道表面旋转,控制模块22就动态地计算制动压力命令88。随着轮子24沿着地面旋转,控制模块22作为输入接收或基于轮速80确定轮子频率ω。控制模块22还接收实际速度102作为输入。例如,如果载具10是飞行器,则实际速度102是地面速度信号。

继续参照图1和图2,滑移计算块103基于轮子频率ω和实际速度102来计算多个轮子24的动态滑移112。具体地,在实施方式中,滑移计算块103基于下式1来计算动态滑移112:

其中r表示载具10的多个轮子24的轮胎94的轮胎滚动半径。然后将动态滑移112发送到求和结点114。求和结点114接收多个轮子24的动态滑移112和目标滑移值116作为输入。由于目标滑移值116相对于多个轮子24的理想滑移值偏移,所以目标滑移值116也可被称为滑移偏移。与理想滑移值相比,目标滑移值116导致制动系统18的制动效率降低,这在下面说明并示出于图3。将理解,目标滑移值116是固定值,其中该固定值基于安装在多个轮子24上的轮胎94的类型。轮胎94的类型取决于诸如例如皮带构造和侧壁构造的特性,其中皮带构造是指半径或正交铺设构造。因此,如果安装在轮子24上的特定类型的轮胎94改变,则更新目标滑移值116。

图3示出示例性mu-slip曲线130。将理解,为了说明而示出mu-slip曲线130,控制模块22可不知道mu-slip曲线130。特定mu-slip曲线轮廓132基于特定类型的轮胎94(图1)。mu-slip曲线130包括表示轮胎滑移的x轴以及表示制动效率的y轴。在如图3所示的非限制性示例中,理想滑移点134表示沿着mu-slip曲线130的如下的点,即,该点导致最大百分比的制动效率。在实施方式中,理想滑移点134导致约12%制动效率。目标滑移点136相对于理想滑移点134偏移。例如,在所示的实施方式中,目标滑移点136与约8-10%制动效率相关。理想滑移点134与目标滑移点136之间的差异被称为制动效率降低140。

参照图1和图3,将理解,制动效率降低140导致制动系统18的停止效率降低。换言之,当制动系统18使载具10停止时目标滑移点136导致降低的性能参数。制动性能参数的一些示例包括(但不限于)停止距离和时间。如果载具10在停止时花费太长时间或需要太长距离,则这可产生不利条件。因此,控制模块22选择导致制动系统18使载具10在阈值时间和阈值距离内停止的目标滑移点136。例如,如果载具10是飞行器,则阈值时间和阈值距离确保飞行器在着陆期间留在跑道上。因此,在图2中看到的目标滑移值116表示与理想滑移值相比制动系统18的停止距离和停止时间的增加。然而,目标滑移值116还导致每次应用制动系统18时制动系统18从储能装置30消耗较少能量。

参照图1和图2,求和结点114通过将动态滑移112与目标滑移值116进行比较来确定滑移误差148,其中滑移误差148是动态滑移112与目标滑移之间的差异。然后将滑移误差148应用于比例积分(pi)控制器150以确定防滑命令90。pi控制器150包括比例增益kp、积分增益ki和积分器108。

将比例增益kp与滑移误差148组合导致当滑移误差148保持恒定时防滑命令90的值成比例增加。比例增益kp的值越高导致以越快的速率从防滑命令90去除滑移误差148。比例增益kp基于载具10的结构动力学和制动系统动力学(即,阀、轮胎和液压系统)。如果载具10是飞行器,则比例增益kp还基于空气动力学和地面反作用力。地面反作用力是指施加在飞行器上的摩擦和垂直力。控制模块22将滑移误差148与比例增益kp组合,这得到发送到求和结点162的比例值160。

积分增益ki是存储在控制模块22的存储器1034(图8)中的固定值。另选地,比例增益kp是函数或基于查找表来确定。积分增益ki导致对于制动系统18的给定响应,滑移误差148的稳态速率降低。积分增益ki的值越高导致以越快的速率从防滑命令90去除滑移误差148。将理解,增大积分增益ki允许制动系统18快速地对打滑做出调整,而无需恒定地命令比例增益kp。控制模块22将滑移误差148与积分增益ki组合,这得到第一积分值164。第一积分值164由积分器108积分,所得第二积分值168被发送到求和结点162。

求和结点162将比例值160和第二积分值168组合在一起,这得到防滑命令90。如图3中看到的,基于输入命令86和防滑命令90来确定制动压力命令88。具体地,控制模块22基于防滑命令90与输入命令86之间的差异来确定制动压力命令88,其中制动压力命令88指示由制动层叠物34施加在载具10的多个轮子24上的压缩力的量。

现在参照图4,示出示例性过程流程图,其示出在备用操作模式期间确定防滑命令90的方法200。参照图1、图2和图4,方法200开始于决策方框202。在决策方框202中,控制模块22确定制动系统18是否正在备用操作模式下操作。如上所述,备用操作模式节省储存在储能装置中的能量。如果制动系统18正在备用操作模式下操作,则方法200可前进到方框204。

在方框204中,响应于确定制动系统18正在备用操作模式下操作,控制模块22计算多个轮子24的动态滑移112(见于图2)。然后,方法200可前进到方框206。

在方框206中,控制模块22通过将动态滑移112与目标滑移值116进行比较来确定滑移误差148,其中目标滑移值116小于多个轮子24的理想滑移值并且与理想滑移值相比导致制动效率降低。

在实施方式中,在方框206a中,控制模块22确定滑移误差148。具体地,在方框206a中,控制模块22基于多个轮子24的轮子频率ω和载具10的实际速度102来确定滑移误差148。在实施方式中,控制模块基于上面所示的式1来确定滑移误差148。然后,方法200可前进到方框208。

具体地参照图2和图4,在方框208a中,控制模块22将滑移误差148与比例增益kp组合,这得到比例值160。如上所述,将比例增益kp与滑移误差148组合导致当滑移误差148保持恒定时防滑命令90的值成比例增加。

在方框208b中,控制模块22将滑移误差148与积分增益ki组合,这得到第一积分值164。控制模块22还对第一积分值164进行积分,这得到第二积分值168。然后,方法200可前进到方框210。

在方框210中,控制模块22基于滑移误差148来计算防滑命令90,其中防滑命令90减小施加到多个轮子24的制动压力的量。如方框210a中看到的,控制模块22通过将比例值160与第二积分值168组合来确定防滑命令90。然后,方法200可前进到方框212。

在方框212中,控制模块22基于防滑命令90与输入命令86之间的差异来确定制动压力命令88,其中输入命令86表示制动系统18所请求的制动量。然后,方法200可返回到方框204,或者另选地,方法200可终止。

现在转向图5,现在描述确定制动压力命令88的另一方法。在如图5所示的示例性实施方式中,多个轮子24是一组轮子180的一部分。例如,在实施方式中,一组轮子24是用于飞行器182的一组起落架。将理解,一些大型飞行器可包括多组起落架。例如,一些大型飞行器可包括五组起落架。在所示的非限制性实施方式中,起落架组包括四个轮子24。各个轮子24由对应轮速传感器70监测。

继续参照图5,作为一组轮子24的一部分的单个轮子24被指定为观测轮24a。监测观测轮24a以确定mu-slip系数μ。尽管左上轮子24被指定为观测轮24a,但是将理解,该例示本质上仅是示例性,任何轮子24可被指定为观测轮24a。将理解,各组轮子180包括对应指定的观测轮24a。例如,具有五组起落架的飞行器将包括五个指定的观测轮24a。

响应于确定轮子24沿着表面旋转,控制模块22确定仅施加到设计的观测轮24a的第一制动压力命令188。将理解,基于理想滑移值来确定第一制动压力命令188。具体地,参照图3,基于沿着mu-slip曲线130的理想滑移点134,而非目标滑移点136来确定第一制动压力命令188。因此,第一制动压力命令188不导致制动效率降低140(见于图3)。

控制模块22从观测轮24a的轮速传感器70a接收轮速80作为输入。控制模块22还接收飞行器182的实际速度102(例如,地面速度信号)。控制模块22确定观测轮24a的轮速80与实际速度102之间的差异。如下面更详细说明的,控制模块22基于观测轮24a的轮速80与实际速度102之间的差异来确定观测轮24a何时开始经历打滑状况190(示出于图6c)。响应于检测到打滑状况190的开始,控制模块22减小第一制动压力命令188,这导致观测轮24a从打滑状况190恢复。一旦观测轮24a已经历至少一个打滑状况,则控制模块22计算施加到作为一组轮子180的一部分的剩余轮子24的第二制动压力命令189。

图6a示出在打滑状况190期间观测轮24a的制动压力196(即,图1中的制动压力信号82)的曲线图。图6b和图6c分别示出在打滑状况190期间观测轮24a的制动扭矩198和观测轮24a的轮速80。图6d示出当设计的观测轮24a经历打滑状况190时的示例性mu-slip曲线230。图6a至图6d所示的曲线图各自包括四个操作点,标记为操作点1、操作点2、操作点3和操作点4。如图6a中看到的,观测轮24a的制动压力196在操作点1、操作点2和操作点3之间增加。如图6c中看到的,观测轮24a在操作点3和操作点4之间开始经历打滑状况190。然而,观测轮24a在操作点4之后从打滑状况190恢复。

参照图1、图5、图6a和图6c,控制模块22增大第一制动压力命令188的值,这导致观测轮24a的制动压力196增加(图6a)。控制模块22继续增大第一制动压力命令188的值,直至检测到打滑状况190(在操作点3和操作点4之间)。第一制动压力命令188的增加导致制动扭矩的量增加(见于图6b)并且观测轮24a的轮速80减小(见于图6c)。

参照图1、图5、图6a和图6c,控制模块22基于观测轮24a的轮速80与载具10的实际速度102(即,飞行器的地面速度)之间的差异来确定打滑状况190的开始。具体地,控制模块22确定观测轮24a的轮速80与载具10的实际速度102(即,飞行器的地面速度)之间的速度差。响应于确定观测轮24a的轮速80与载具10的实际速度102之间的速度差超过阈值差,控制模块22确定设计的观测轮24a已开始经历打滑状况190。阈值速度差表示观测轮24a相对于地面滑移并经历速度的突然减小的状况。图6c示出在打滑状况190期间观测轮24a的轮速80突然减小。具体地,图6c示出将操作点3和操作点4连接在一起的线300,并且表示在打滑状况190期间轮速80突然减小。线304将操作点1、2和3连接在一起,并且表示载具10在打滑状况190之前停止的轮速80。在打滑状况190期间观测轮24a滑移时的线300的梯度是线304的梯度的至少两倍。

响应于检测到打滑状况190的开始,控制模块22减小第一制动压力命令188的值。参照图5和图6c,控制模块22继续减小第一制动压力命令188,直至观测轮24a从打滑状况190恢复。如图6c中看到的,当观测轮24a从打滑状况190恢复时,观测轮24a的轮速80约等于实际速度102,并且称为打滑恢复状况240。将理解,尽管图6c中仅示出一个打滑状况190,但当飞行器182停止时观测轮24a经历多个打滑状况。然而,为了简单起见,在图6a至图6c所示的曲线图中仅示出单个打滑状况190。

参照图6d,mu-slip曲线230上的操作点1、2、3和4对应于图6a至图6c中的操作点1、2、3和4。如上所述,特定mu-slip曲线230基于经验数据,并且取决于所设计的观测轮24a(图5)所使用的特定类型的轮胎94。将理解,观测轮24a生成当观测轮24a经历打滑状况时的理想滑移值。具体地,参照图3、图5、图6c和图6d,在mu-slip曲线230(示出于图6d)上的操作点4处,mu-slip系数μ的有效值处于其理想滑移点134处。换言之,mu-slip系数μ处于当观测轮24a经历打滑状况190时的理想滑移点134处。具体地参照图3、图6c和6d,当观测轮24a的轮速80处于最小值(操作点4处)时,mu-slip系数μ的有效值是理想滑移点134。

参照图5和图6a至图6d,响应于确定观测轮24a开始打滑状况190,控制模块22确定施加到剩余轮子24的第二制动压力命令189。例如,在如图5所示的实施方式中,第二制动压力命令189将被施加到剩余三个轮子24。控制模块22基于目标滑移值116来确定第二制动压力命令189,其中目标滑移值116相对于理想滑移值偏移并导致制动系统18的制动效率降低。具体地,如上面说明并示出于图3中的,目标滑移点136相对于理想滑移点134偏移,并导致制动效率降低140。第二制动压力命令189然后被施加到剩余多个轮子24。

参照图5,在一个实施方式中,控制模块22通过将第二制动压力命令189减小参数置信值来确定减小的第二制动压力命令270。参数置信值表示一组轮子180中的各个轮子24之间的一个或更多个变化的操作条件。在实施方式中,变化的操作条件包括沿着地面的摩擦系数、制动器磨损量、轮胎磨损量、制动系统18操作期间的载具速度和制动扭矩增益。例如,轮子24之一与剩余轮子24相比可经历不同的摩擦系数。具体地,轮子24之一可沿着沿跑道定位的打滑或结冰的一块滚动,而其它剩余轮子24沿着跑道的干燥部分滚动。在一个非限制性实施方式中,参数置信值将第二制动压力命令189减小约10%,然而,该值本质上是示例性的。

图7是示出用于确定施加到图5所示的飞行器182的剩余轮子24的第二制动压力命令189的方法400的示例性过程流程图。大致参照图1、图5、图6a至图6d和图7,方法400开始于决策方框402。在决策方框402中,控制模块22确定制动系统18是否正在备用操作模式下操作。如果制动系统18正在备用操作模式下操作,则方法400可前进到方框404。

在方框204中,响应于确定制动系统18正在备用操作模式下操作,将第一制动压力命令188施加到观测轮24a(见于图5)。然后,方法400可前进到方框406。

在方框406中,控制模块22监测当第一制动压力命令188被施加到观测轮24a时观测轮的轮速80和载具182的实际速度102。如果载具10是飞行器(例如,见于图5中的飞行器182),则实际速度102是地面速度。参照图5和图6a,控制模块22在监测观测轮24a的轮速80和载具10的实际速度102的同时继续增大第一制动压力命令188的值。然后,方法400可前进到决策方框408。

在决策方框408中,控制模块22基于观测轮24a的轮速80和载具10的实际速度102来确定观测轮24a是否开始打滑状况190(见于图6c)。如图6c和图6d中看到的,观测轮24a生成打滑状况190期间的理想滑移值(即,理想滑移点134)。例如,如上面说明的,响应于确定观测轮24a的轮速80与实际速度102之间的差超过阈值差,控制模块22确定设计的观测轮24a已开始经历打滑状况190。

如果观测轮24a未开始打滑状况190,则方法400返回到方框406。然而,如果控制模块22基于观测轮24a的轮速80和载具10的实际速度102确定观测轮24a开始打滑状况,则方法400可同时前进到方框410和414。

在方框410中,响应于确定观测轮24a开始打滑状况190,控制模块22基于目标滑移值来确定第二制动压力命令189,其中目标滑移值相对于理想滑移值偏移并导致制动系统18的制动效率降低。然后,方法400可前进到方框412。

在方框412中,控制模块22将第二制动压力命令189施加到多个轮子24的剩余部分。例如,如图5中看到的,第二制动压力命令189被施加到剩余三个轮子24。

现在描述方框414和416。在方框414中,响应于确定观测轮24a开始打滑状况190,控制模块22减小第一制动压力命令188的值。然后,方法400可前进到决策方框416。

在决策方框416中,控制模块22确定观测轮24a的轮速80是否约等于载具10的实际速度102。如果轮速80不约等于实际速度102,则方法返回到方框414,并且第一制动压力命令188继续减小。然而,如果观测轮24a的轮速80约与载具10的实际速度102相同,则实现打滑恢复状况240(见于图6c)。然后,方法可返回到方框404,重新产生另一打滑状况190。另选地,如果载具10已停止,则方法400可终止。

大致参照图1至图7,本公开针对制动系统的储能装置提供了各种技术效果和益处。具体地,与传统制动系统相比,所公开的制动系统在备用操作模式期间每次施加制动时使用更少的能量,这节省了储存在储能装置内的能量。因此,在一些方法中,与传统装置相比,所公开的储能装置可更小且更轻,这继而减小了诸如飞行器的载具的质量。

现在参照图8,控制模块22被实现于诸如示例性计算机系统1030的一个或更多个计算机装置或系统上。计算机系统1030包括处理器1032、存储器1034、大容量存储存储器装置1036、输入/输出(i/o)接口1038和人机接口(hmi)1040。计算机系统1030经由网络1026或i/o接口1038在操作时联接到一个或更多个外部资源1042。外部资源可包括(但不限于)服务器、数据库、大容量存储装置、外围装置、基于云的网络服务或者可由计算机系统1030使用的任何其它合适的计算机资源。

处理器1032包括选自微处理器、微控制器、数字信号处理器、微计算机、中央处理单元、现场可编程门阵列、可编程逻辑装置、状态机、逻辑电路、模拟电路、数字电路或者基于存储在存储器1034中的操作指令来操纵信号(模拟或数字)的任何其它装置的一个或更多个装置。存储器1034包括单个存储器装置或多个存储器装置,包括(但不限于)只读存储器(rom)、随机存取存储器(ram)、易失性存储器、非易失性存储器、静态随机存取存储器(sram)、动态随机存取存储器(dram)、闪存、高速缓存存储器或者能够存储信息的任何其它装置。大容量存储存储器装置1036包括诸如硬盘驱动器、光学驱动器、磁带驱动器、易失性或非易失性固态装置或者能够存储信息的任何其它装置之类的数据存储装置。

处理器1032在驻留在存储器1034中的操作系统1046的控制下操作。操作系统1046管理计算机资源以使得具体实现为一个或更多个计算机软件应用(例如,驻留在存储器1034中的应用1048)的计算机程序代码可具有由处理器1032执行的指令。在替代示例中,处理器1032可直接执行应用1048,在这种情况下可省略操作系统1046。一个或更多个数据结构1049也驻留在存储器1034中并且可由处理器1032、操作系统1046或应用1048使用以存储或操纵数据。

i/o接口1038提供在操作时将处理器1032联接到其它装置和系统(例如,网络1026或外部资源1042)的机器接口。应用1048由此通过经由i/o接口1038通信以提供包括本公开的示例的各种特征、功能、应用、处理或模块来与网络1026或外部资源1042协作地工作。应用1048还包括由一个或更多个外部资源1042执行的程序代码,或者依赖于计算机系统1030外部的其它系统或网络组件所提供的功能或信号。实际上,假定几乎无穷的硬件和软件配置是可能的,本领域普通技术人员将理解,本公开的示例可包括位于计算机系统1030外部、在多个计算机或其它外部资源1042之间分布、或者由作为经由网络1026的服务(例如,云计算服务)提供的计算资源(硬件和软件)提供的应用。

hmi1040以已知方式在操作时联接到计算机系统1030的处理器1032,以允许用户直接与计算机系统1030交互。hmi1040可包括视频或字母数字显示器、触摸屏、扬声器以及能够向用户提供数据的任何其它合适的音频和视觉指示器。hmi1040还包括能够接受来自用户的命令或输入并将所输入的输入发送到处理器1032的输入装置和控件(例如,字母数字键盘、指点装置、键区、按钮、控制旋钮、麦克风等)。

数据库1044可驻留在大容量存储存储器装置1036上,并且可用于收集和组织本文所描述的各种系统和模块使用的数据。数据库1044可包括数据以及存储和组织数据的支持数据结构。具体地,数据库1044可布置有任何数据库组织或结构,包括(但不限于)关系数据库、分层数据库、网络数据库或其组合。作为指令在处理器1032上执行的计算机软件应用形式的数据库管理系统可用于响应于查询而访问数据库1044的记录中存储的信息或数据,其中可由操作系统1046、其它应用1048或者一个或更多个模块动态地确定和执行查询。

本公开的描述本质上仅是示例性的,不脱离本公开的主旨的变化旨在落在本公开的范围内。这些变化不应被视为脱离本公开的精神和范围。

发布于 2023-01-07 01:28

免责声明:

本文由 大分享 原创或收集发布于 火鲤鱼 ,著作权归作者所有,如有侵权可联系本站删除。

火鲤鱼 © 2024 专注小微企业服务 冀ICP备09002609号-8