用Python实现RFM模型——互联网产品用户分层必备技巧
1.前言
RFM模型即”R”——Recency(最近一次消费时间)、”F”——Frequency(一段时间内消费频次)、”M”——(一段时间内消费总额)。这三个指标可以将我们的用户划分成不同的等级和层次,目的是为了衡量他们的用户价值,从而能够更准确地将成本和精力花在更精确的用户层次身上。一个典型的例子就是针对一个明显无意愿的流失用户,对其继续push自己的核心产品,费时费力也费钱。
2.如何用Python建立RFM模型
RFM模型,虽然字眼中带着“模型”二字,但实际它根本不需要任何的算法支撑,和数据建模中的逻辑回归,聚类分析等是完全不同的概念。因而实现RFM的工具和方法有很多:SQL, Excel, R等等都能够做到,当然Python也不例外,RFM模型的核心就是将三个指标进行标签化,然后根据实际场景业务需求进行分层即可。下面的文章我就通过一个简单的例子来通过代码实现RFM模型的建立。
2.1数据导入
链接:https://pan.baidu.com/s/1YbZrdsg2dOoe_5lylTwhQw 提取码:nf2f 数据是某电商的一款SKU于2018年的销售表单,字段本身只有4个,但是足够建立RFM模型了。
import os import numpy as np import pandas as pd import seaborn as sns import matplotlib.pyplot as plt %matplotlib inline plt.rcParams['font.serif'] = ['SimHei'] plt.rcParams['font.sans-serif'] = ['SimHei'] plt.rcParams['axes.unicode_minus']=False sns.set_style('ticks', {'font.sans-serif':['simhei','Droid Sans Fallback']})