一种机翼碎涡结构、机翼及飞机的制作方法
本实用新型涉及飞行领域,特别是涉及一种机翼碎涡结构、机翼及飞机。
背景技术:
翼尖涡是航空交通的一大危害,飞机在空中航行时,如遭遇前机尾涡,会导致激烈翻转或猛然下坠,尤其在起飞降落阶段,这一影响更为严重。为保证现有飞机的安全,现有飞机起落间隔主要取决于进近阶段机翼尾涡对大气流场的影响,要等待数分钟以使尾涡消散。
翼尖涡产生的原因是由于机翼下表面压力大于机翼上表面,这一方面产生了升力,一方面在翼尖处产生了从下方向上方的翼尖涡,随大气风场向后传播对后机造成影响。
现有的技术方案主要是通过翼梢小翼阻挡翼尖涡的生成。现常见的翼梢小翼包括帆板式、融合式、双羽式等多种翼梢小翼。然而翼梢小翼仅仅通过阻碍由于上下翼表面的压力差导致的空气流动而减小尾涡的环量,此时虽然产生的尾涡环量减小,但仍然对后机有较大的影响。
技术实现要素:
本实用新型的目的在于:针对现有技术存在的现有翼梢小翼仅仅通过阻碍由于上下翼表面的压力差导致的空气流动而减小尾涡的环量,此时虽然产生的尾涡环量减小,但仍然对后机有较大的影响的问题,提供一种机翼碎涡结构、机翼及飞机,形成对产生尾涡的侧向气流,使涡环量不均衡进而加速尾涡的消散,大幅减少尾涡对后机的影响。
为了实现上述目的,本实用新型采用的技术方案为:
一种机翼碎涡结构,包括设于飞机机翼本体前缘的第一开口和设于所述机翼本体后缘的第二开口,所述第一开口和所述第二开口通过连通管导通,所述连通管位于所述机翼本体内部。
采用本实用新型所述的一种机翼碎涡结构,通过所述连通管导通所述机翼本体前缘和后缘,由所述机翼本体前后压力差在所述连通管中产生吹向尾涡的气流,由于尾涡产生于所述机翼本体翼梢之后,所述连通管位于翼梢内侧,所述连通管导出的气流能够向尾涡施加侧向喷流,使涡环量不均衡,可以有效触发涡流的不稳定性,极大加速尾涡消散,减小尾涡对后机的影响,该机翼碎涡结构极其简单,制造十分方便,效果特别良好,便于推广。
优选地,所述连通管相对飞机机体长度方向倾斜设置,倾斜方向的后端靠近所述机翼本体翼梢。
采用这种结构设置,所述连通管直接指向尾涡,其流出的气流也能更快破坏尾涡,加速尾涡消散。
优选地,所述第一开口设于所述机翼本体前缘距离翼梢1/4-1/2处。
优选地,所述第二开口设于所述机翼本体前缘距离翼梢1/4-1/2处。
优选地,该机翼碎涡结构还包括启闭器,所述启闭器设于所述机翼本体上,所述启闭器用于启闭所述第一开口或者第二开口,或者所述启闭器用于通断所述连通管。
采用这种结构设置,在飞机起飞时所述启闭器开启所述连通管,使气流流向尾涡加速尾涡消散,减小起飞间隔;飞机巡航时所述启闭器关闭所述连通管,减小阻力,保持飞机所需升力;飞机降落时所述启闭器再次开启所述连通管,使气流流向尾涡加速尾涡消散,减小降落间隔。
进一步优选地,所述启闭器设于所述机翼本体前缘,所述启闭器包括驱动器、遮挡板和滑轨,所述机翼本体前缘上下两侧分别设有所述滑轨,所述遮挡板滑动连接于两个所述滑轨,所述驱动器驱动所述遮挡板沿所述滑轨移动,所述遮挡板能够启闭所述第一开口。
进一步优选地,所述遮挡板上设有齿条,所述驱动器包括齿轮和驱动轴,所述驱动轴连接所述齿轮,并驱动所述齿轮转动,所述齿轮啮合所述齿条。
优选地,该机翼碎涡结构还包括控制器,所述控制器电性连接所述启闭器,所述控制器用于控制所述启闭器工作。
进一步优选地,所述控制器为机载电脑。
本实用新型还提供了一种机翼,包括机翼本体和如以上任一项所述机翼碎涡结构。
采用本实用新型所述的一种机翼,通过所述连通管导通所述机翼本体前缘和后缘,由所述机翼本体前后压力差在所述连通管中产生吹向尾涡的气流,由于尾涡产生于所述机翼本体翼梢之后,所述连通管位于翼梢内侧,所述连通管导出的气流能够向尾涡施加侧向喷流,使涡环量不均衡,可以有效触发涡流的不稳定性,极大加速尾涡消散,减小尾涡对后机的影响,该机翼碎涡结构极其简单,制造十分方便,效果特别良好,便于推广。
优选地,所述机翼本体上设有翼梢小翼。
本实用新型还提供了一种飞机,包括如以上任一项所述的机翼。
采用本实用新型所述的一种飞机,通过所述连通管导通所述机翼本体前缘和后缘,由所述机翼本体前后压力差在所述连通管中产生吹向尾涡的气流,由于尾涡产生于所述机翼本体翼梢之后,所述连通管位于翼梢内侧,所述连通管导出的气流能够向尾涡施加侧向喷流,使涡环量不均衡,可以有效触发涡流的不稳定性,极大加速尾涡消散,减小尾涡对后机的影响,该机翼碎涡结构极其简单,制造十分方便,效果特别良好,便于推广。
综上所述,由于采用了上述技术方案,本实用新型的有益效果是:
1、本实用新型所述的一种机翼碎涡结构、机翼及飞机,通过所述连通管导通所述机翼本体前缘和后缘,由所述机翼本体前后压力差在所述连通管中产生吹向尾涡的气流,由于尾涡产生于所述机翼本体翼梢之后,所述连通管位于翼梢内侧,所述连通管导出的气流能够向尾涡施加侧向喷流,使涡环量不均衡,可以有效触发涡流的不稳定性,极大加速尾涡消散,减小尾涡对后机的影响,该机翼碎涡结构极其简单,制造十分方便,效果特别良好,便于推广;
2、本实用新型所述的一种机翼碎涡结构、机翼及飞机,所述连通管相对飞机机体长度方向倾斜设置,倾斜方向的后端靠近所述机翼本体翼梢,所述连通管直接指向尾涡,其流出的气流也能更快破坏尾涡,加速尾涡消散;
3、本实用新型所述的一种机翼碎涡结构、机翼及飞机,在飞机起飞时所述启闭器开启所述连通管,使气流流向尾涡加速尾涡消散,减小起飞间隔;飞机巡航时所述启闭器关闭所述连通管,减小阻力,保持飞机所需升力;飞机降落时所述启闭器再次开启所述连通管,使气流流向尾涡加速尾涡消散,减小降落间隔。
附图说明
图1是本实用新型所述机翼碎涡结构的示意图一;
图2是本实用新型所述机翼碎涡结构的示意图二;
图3a是本实用新型所述机翼碎涡结构的示意图三;
图3b是本实用新型所述机翼碎涡结构的示意图四;
图4a是naca4412标准机翼切片涡量云图(40m);
图4b是具有机翼碎涡结构的naca4412机翼切片涡量云图(40m);
图5a是naca4412标准机翼切片涡量云图(80m);
图5b是具有机翼碎涡结构的naca4412机翼切片涡量云图(80m);
图6a是naca4412标准机翼切片涡量云图(120m);
图6b是具有机翼碎涡结构的naca4412机翼切片涡量云图(120m);
图7a是naca4412标准机翼切片涡量云图(160m);
图7b是具有机翼碎涡结构的naca4412机翼切片涡量云图(160m);
图8a是naca4412标准机翼切片速度梯度图(40m);
图8b是具有机翼碎涡结构的naca4412机翼切片速度梯度图(40m);
图9a是naca4412标准机翼切片速度梯度图(80m);
图9b是具有机翼碎涡结构的naca4412机翼切片速度梯度图(80m);
图10a是naca4412标准机翼切片速度梯度图(120m);
图10b是具有机翼碎涡结构的naca4412机翼切片速度梯度图(120m);
图11a是naca4412标准机翼切片速度梯度图(160m);
图11b是具有机翼碎涡结构的naca4412机翼切片速度梯度图(160m)。
图标:1-机翼本体,11-第一开口,12-第二开口,13-连通管,14-翼梢小翼,2-遮挡板,21-齿条,3-滑轨,4-齿轮,41-驱动轴。
具体实施方式
下面结合附图,对本实用新型作详细的说明。
为了使本实用新型的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本实用新型进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本实用新型,并不用于限定本实用新型。
实施例1
如图1-图11b所示,本实用新型所述的一种机翼碎涡结构,包括设于飞机机翼本体1前缘的第一开口11和设于所述机翼本体1后缘的第二开口12,所述第一开口11和所述第二开口12通过连通管13导通,所述连通管13位于所述机翼本体1内部。
如图2所示,所述连通管13相对飞机机体长度方向倾斜设置,倾斜方向的后端靠近所述机翼本体1翼梢,采用这种结构设置,所述连通管13直接指向尾涡,其流出的气流也能更快破坏尾涡,加速尾涡消散;如图1和图2所示,所述第一开口11设于所述机翼本体1前缘距离翼梢1/3处,所述第二开口12设于所述机翼本体1前缘距离翼梢1/4处,使气流流经开孔交于尾涡后一倍翼展长度处最佳,可有效在尾涡生成阶段触发尾涡的自相交不稳定性。
如图3a和图3b所示,该机翼碎涡结构还包括启闭器和控制器,所述启闭器设于所述机翼本体1上,所述启闭器用于启闭所述第一开口11或者第二开口12,或者所述启闭器用于通断所述连通管13,所述控制器电性连接所述启闭器,所述控制器用于控制所述启闭器工作;具体地,所述启闭器设于所述机翼本体1前缘,所述启闭器包括驱动器、遮挡板2和滑轨3,所述机翼本体1前缘上下两侧分别设有所述滑轨3,所述遮挡板2滑动连接于两个所述滑轨3,所述驱动器驱动所述遮挡板2沿所述滑轨3移动,所述遮挡板2能够启闭所述第一开口11,所述遮挡板2上设有齿条21,所述驱动器包括齿轮4和驱动轴41,所述驱动轴41连接所述齿轮4,并驱动所述齿轮4转动,所述齿轮4啮合所述齿条21,所述控制器为机载电脑。
为了了解飞机尾涡的演化规律,通常选用环量、涡量、切向速度、涡核半径、下沉速度等作为量化尾涡特性的参数,其中对后机气动性能影响较大的是涡量以及切向速度,因此以下将分析对比naca4412标准机翼和具有机翼碎涡结构的naca4412机翼的涡量以及切向速度。
涡量是表征飞机尾涡强度的重要参数,其物理意义在于描述流体速度矢量的旋度,对于三维流场域内涡量矢量形式可表述如下:
其中,ωx、ωy、ωz分别为涡量在x、y、z三个方向上的分量。
对于二维平面流场,由于涡量仅在一个方向上存在分量,因此可用涡量在y方向上的分量来表述,即:
计算后如图4a-图7b所示,图4a、图5a、图6a和图7a为naca4412标准机翼切片涡量云图,图4b、图5b、图6b和图7b为具有机翼碎涡结构的naca4412机翼切片涡量云图。
如图4a所示,naca4412标准机翼在y=40m处测得y向涡量最大值为17.90;如图4b所示,具有机翼碎涡结构的naca4412机翼在y=40m处测得y向涡量最大值为16.69;同比下降约7%。
如图5a所示,naca4412标准机翼在y=80m处测得y向涡量最大值为5.78;如图5b所示,具有机翼碎涡结构的naca4412机翼在y=40m处测得y向涡量最大值为5.01;同比下降约13%。
如图6a所示,naca4412标准机翼在y=120m处测得y向涡量最大值为4.26;如图6b所示,具有机翼碎涡结构的naca4412机翼在y=40m处测得y向涡量最大值为3.65;同比下降约15%。
如图7a所示,naca4412标准机翼在y=160m处测得y向涡量最大值为3.86;如图7b所示,具有机翼碎涡结构的naca4412机翼在y=40m处测得y向涡量最大值为2.91;同比下降约25%。
根据四处切片对比可知,具有机翼碎涡结构产生的气流尾涡加速了翼尖尾涡的消散,且随着尾涡的发展涡量下降越明显;根据涡量对比,说明在近地阶段翼尖开孔可以减小向后传递的涡量。
环量是流体速度(即尾涡切向速度)沿着一条闭曲线的路径积分,通常以来表示,其表达式如下:
由kutta-joukowsky定律可知,飞机尾流环量与飞行速度及机翼形状等多种因素有关;当升力系数为cl,机翼展弦比为ar,翼展为b的飞机以速度v飞行时,其获取的升力等于卷起的尾涡动量通量,s为沿翼展方向的载荷因素,由此得飞机尾涡的初始环量γ0可表述为:
当作用在飞机上的力达到平衡时,飞机的升力和尾流的垂直动量通量等于飞机的重量,我们可以得到平衡状态时的尾涡的初始环量γ0:
对于单个尾涡或轴对称的尾涡而言,其在固定半径上的环量值还可利用该半径处的切向速度来表述:
由于切向速度由于需要确定不同平面的涡核中心,根据图4a-图7b对比可知,机翼开孔对涡核位置影响较小,因此直接选用不同xoz截面上的速度进行对比。
计算后如图8a-图11b所示,图8a、图9a、图10a和图11a为naca4412标准机翼切片速度梯度图,图8b、图9b、图10b和图11b为具有机翼碎涡结构的naca4412机翼切片速度梯度图。
如图8a、图9a、图10a和图11a所示,可知气流流过机翼后在y=40m、80m、120m、160m处形成翼尖涡,且随着翼尖涡向后传递过程中切向速度逐渐减小、涡环量逐渐减小。
如图8b、图9b、图10b和图11b所示,可知气流流过开孔机翼后在y=40m、80m、120m、160m处并排形成两个大小不同的涡,其中翼尖涡切向速度与涡环量较大,因此对后机气动性能影响较大,开孔后形成的涡与翼尖涡方向相同,涡环量较小,因而对后机气动性能影响较小。
根据图8a与图8b的对比可知,开孔后相比正常机翼翼尖涡影响区域较小,且两并排形成的涡中间有紊流产生,导致两涡能量消耗增加,加速尾涡消散;根据图11a与图11b的对比可知,未开孔机翼此时切向速度标量仍可达4.2m/s,而开孔后机翼此时切向速度标量可降至3.4m/s;说明开孔机翼能够有效减小翼尖涡向后传递过程中的环量以及切向速度。
运用本实用新型所述的一种机翼碎涡结构,通过所述连通管13导通所述机翼本体1前缘和后缘,由所述机翼本体1前后压力差在所述连通管13中产生吹向尾涡的气流,由于尾涡产生于所述机翼本体1翼梢之后,所述连通管13位于翼梢内侧,所述连通管13导出的气流能够向尾涡施加侧向喷流,使涡环量不均衡,可以有效触发涡流的不稳定性,极大加速尾涡消散,减小尾涡对后机的影响;在飞机起飞时所述启闭器开启所述连通管13,使气流流向尾涡加速尾涡消散,减小起飞间隔;飞机巡航时所述启闭器关闭所述连通管13,减小阻力,保持飞机所需升力;飞机降落时所述启闭器再次开启所述连通管13,使气流流向尾涡加速尾涡消散,减小降落间隔;该机翼碎涡结构极其简单,制造十分方便,效果特别良好,便于推广。
实施例2
本实用新型所述的一种机翼,包括机翼本体1和如实施例1所述机翼碎涡结构,如图1和图2所示,所述机翼本体1上设有翼梢小翼14。
运用本实用新型所述的一种机翼,通过所述连通管13导通所述机翼本体1前缘和后缘,由所述机翼本体1前后压力差在所述连通管13中产生吹向尾涡的气流,由于尾涡产生于所述机翼本体1翼梢之后,所述连通管13位于翼梢内侧,所述连通管13导出的气流能够向尾涡施加侧向喷流,使涡环量不均衡,可以有效触发涡流的不稳定性,极大加速尾涡消散,减小尾涡对后机的影响,该机翼碎涡结构极其简单,制造十分方便,效果特别良好,便于推广。
实施例3
本实用新型所述的一种飞机,包括机体,所述机体连接如实施例2所述的机翼。
运用本实用新型所述的一种飞机,通过所述连通管13导通所述机翼本体1前缘和后缘,由所述机翼本体1前后压力差在所述连通管13中产生吹向尾涡的气流,由于尾涡产生于所述机翼本体1翼梢之后,所述连通管13位于翼梢内侧,所述连通管13导出的气流能够向尾涡施加侧向喷流,使涡环量不均衡,可以有效触发涡流的不稳定性,极大加速尾涡消散,减小尾涡对后机的影响,该机翼碎涡结构极其简单,制造十分方便,效果特别良好,便于推广。
以上所述仅为本实用新型的较佳实施例而已,并不用以限制本实用新型,凡在本实用新型的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本实用新型的保护范围之内。