混沌理论的特性
混沌理论有以下几个特性:
(1)随机性.体系处于混沌状态是由体系内部动力学随机性产生的不规则性行为,常称之为内随机性.例如,在一维非线性映射中,即使描述系统演化行为的数学模型中不包含任何外加的随机项,即使控制参数、韧始值都是确定的,而系统在混吨区的行为仍表现为随机性.这种随机性自发地产生于系统内部,与外随机性有完全不同的来源与机制,显然是确定性系统内部一种内在随机性和机制作用.体系内的局部不稳定是内随机性的特点,也是对初值敏感性的原因所在.
(2)敏感性.系统的混沌运动,无论是离散的或连续的,低维的或高维的,保守的或耗散的。时间演化的还是空间分布的,均具有一个基本特征,即系统的运动轨道对初值的极度敏感性.这种敏感性,一方面反映出在非线性动力学系统内,随机性系统运动趋势的强烈影响;另一方面也将导致系统长期时间行为的不可预测性.气象学家洛仑兹提出的所谓“蝴蝶效应”就是对这种敏感性的突出而形象的说明.
(3)分维性.混沌具有分维性质,是指系统运动轨道在相空间的几何形态可以用分维来描述。例如Koch雪花曲线的分维数是1.26;描述大气混沌的洛伦兹模型的分维数是2.06体系的混沌运动在相空间无穷缠绕、折叠和扭结,构成具有无穷层次的自相似结构。
(4)普适性.当系统趋于混沌时,所表现出来的特征具有普适意义.其特征不因具体系统的不同和系统运动方程的差异而变化.这类系统都与费根鲍姆常数相联系.这是一个重要的普适常数δ=4.669201609l0299097…
(5)标度律.混沌现象是一种无周期性的有序态,具有无穷层次的自相似结构,存在无标度区域.只要数值计算的精度或实验的分辨率足够高,则可以从中发现小尺寸混沌的有序运动花样,所以具有标度律性质.例如,在倍周期分叉过程中,混沌吸引子的无穷嵌套自相似结构,从层次关系上看,具有结构的自相似,具备标度变换下的结构不变性,从而表现出有序性.