优化设计方法的分类及特点

kyszg
kyszg 这家伙很懒,还没有设置简介...

0 人点赞了该文章 · 35 浏览

优化设计方法的分类及特点

     正所谓,条条大道通罗马,大多数问题的解决方法应该都是多样性的,优化设计方法也一样。外行的人可能以为优化设计方法只有区区一种,其实不是这样子的,优化设计方法有很多种,包括无约束优化设计法,约束优化设计法,遗传算法,蚁群算法和模拟退火算法。每一种方法都是一种能使设计更加优化的方法,有着其自身独特的特点,下面我们将一一说明:


    无约束优化设计法:无约束优化设计是没有约束函数的优化设计。无约束可以分为两类,一类是利用目标函数的一阶或二阶导数的无约束优化方法,如最速下降法、共轭梯度法、牛顿法及变尺度法等。另一类是只利用目标函数值的无约束优化方法,如坐标轮换法、单形替换法及鲍威尔法等。此法具有计算效率高、稳定性好等优点。

    约束优化设计法:优化设计问题大多数是约束的优化问题,根据处理约束条件的方法的不同可分为直接法和间接法。直接法常见的方法有复合形法、约束坐标轮换法和网络法等。其内涵是构造一个迭代过程,使每次的迭代点都在可行域中,同时逐步降低目标函数值,直到求得最优解。间接法常见的有惩罚函数法、增广乘子法。它是将约束优化问题转化成无约束优化问题,再通过无约束优化方法来求解,或者非线性优化问题转化成线性规划问题来处理。

    遗传算法:遗传算法,是20世纪70年代初期由美国密执根大学霍兰教授提出的一种全新概率优化方法。GA是一种非确定性的拟自然算法,它仿造自然界生物进化的规律,对一个随机产生的群体进行繁殖演变和自然选择,适者生存,不适者淘汰,如此循环往复,使群体素质和群体中个体的素质不断演化,最终收敛于全局最优解。遗传算法具有鲁棒性、自适应性、全局优化性和隐含并行性。主要应用领域有:函数优化方面、组合优化、机器学习、控制方面、图像处理、故障诊断、人工生命、神经网络等最近几年中遗传算法在机械工程领域也开展了多方面的应用,主要表现在:

    机械结构优化设计:针对简单遗传算法中的线性适应度、恒定交叉与变异概率等不能动态地适应整个寻优过程,提出采用非线性适应度与自适应交叉、变异概率的改进遗传算法,此算法为解决工程结构优化设计、多峰值函数求极值等问题提供了参考。

    可靠性分析:以框架结构系统的可靠性分析为基础,提出框架结构系统可靠性优化的遗传算法。

    故障诊断:以网络权重和偏差的实数形式作为基因构成染色体向量,采用基因多点交叉和动态变异进行种群最优选择,提出了一种新的遗传算法,并在此基础上设计出一种基于遗传算法和溶解气体分析的变压器故障在线诊断系统。

    参数辨识:在现有T-S模糊模型参数辨识方法的基础上,提出了一种先应用最小二乘法对结论参数进行粗略辨识,以确定参数的大致范围之后,再应用遗传算法对前提参数和结论参数同时优化的参数辨识方法。

    机械方案设计:通过把机械方案设计过程看作是一个状态空间的求解问题,用遗传算法控制其搜索过程,构建完善了新的遗传编码体系,为了适应新的编码体系重新构建了交叉和变异等遗传操作,并利用复制、交换和变异等操作进行一次次迭代,最终自动生成一组最优的设计方案。

    此外,GA还应用在模糊逻辑控制器、机器人运动学、反求工程、节能设计、复合材料优化、金属成形优化、数控加工误差自适应预报控制等方面。

    遗传算法尽管已解决了许多难题,但还存在许多问题,如算法本身的参数优化问题、如何避免过早收敛、如何改进操作手段或引入新的操作来提高算法的效率、遗传算法与其它优化算法的结合问题等。用遗传算法求解约束优化问题时,一般采用惩罚函数法,如何合理的选择惩罚因子是算法的难点之所在。惩罚因子取得过小时,可能造成整个罚函数的极小解不是原目标函数的极小解;惩罚因子取得过大时,有可能在可行域外造成多个局部极值点,给搜索过程增加困难。但从检索情况看,对有关遗传算法应用时处理约束的通用、高效、稳健的方法研究,几乎无人涉及。所以,为了确保GA在求解约束优化问题时能发挥所长,对遗传算法解约束优化问题的方法仍需进一步的研究。

    蚁群算法:蚁群算法,是受自然界中真实蚁群的集体行为的启发而提出的一种基于群体的模拟进化算法,是1991年由意大利学者M.Dorigo等人首先提出,通过人工模拟蚂蚁搜索食物的过程来求解旅行商问题。蚁群算法对系统优化问题的数学模型没有很高的要求,只要可以显式表达即可,避免了导数等数学信息,使得优化过程更加简单,遍历性更好,适合非线性问题的求解。主要应用在:旅行商问题、二次分配问题、车间任务调度问题、车辆路线问题、图着色问题、有序排列问题、机构同构判定问题、数据的特征聚类过程、集成电路布线设计、电信路由控制、交通建模及规划等的求解。

    虽然蚁群算法具有正反馈选择、并行计算、群体合作三大优点,但是也存在着需要较长的搜索时间和容易出现“停滞”现象两大缺陷。吴庆洪等从遗传算法中变异算子的作用得到启发,在蚁群算法中采用了逆转变异机制,进而提出了一种具有变异特征的蚁群算法。应用改进型蚁群算法解决车间作业调度问题,在原有标准蚁群算法的基础上采用了新的状态转移规则,讨论了各种不同的轨迹更新规则对仿真结果的影响,并通过统计数据验证了改进型蚁群算法优于标准的蚁群优化算法。

    模拟退火算法:模拟退火算法,最早的思想由Metropolis在1953年提出,Kirkpatrick在1983年成功地应用在组合最优化问题。SA是一个全局最优算法,以优化问题的求解与物理系统退火过程的相似性为基础,利用Metropolis算法并适当的控制温度的下降过程实现模拟退火,从而达到求解全局优化问题的目的。模拟退火算法是一种通用的优化算法,用以求解不同的非线性问题;对不可微甚至不连续的函数优化,能以较大概率求得全局优化解;具有较强的鲁棒性、全局收敛性、隐含并行性及广泛的适应性;并且能处理不同类型的优化设计变量;不需要任何的辅助信息,对目标函数和约束函数没有任何要求。目前已在工程中得到了广泛的应用,诸如VLSI生产调度、控制工程、机器学习、神经网络、图像处理、数值分析等领域。

    模拟退火算法虽然能够以随机搜索技术从概率意义上找出目标函数的全局最优点,但其计算时间长、效果较低。针对算法的“先天性不足”,在确保一定要求的优化质量基础上,对算法进行改进和升级,也可结合其它算法,混合优化SA算法。将隐含使用目标函数梯度信息、迅速收敛的下降的单纯形算法与模拟退火算法相融合,提出了一种混合优化算法,能有效地进行全局寻优。

    网为你提供的优化设计方法分类大致有五种,每一种都做了详细说明。像是模拟退火算法的来源和发展史及其特点,我们都有做说明,希望能给那些想往优化设计方面发展的人提供一些指导。盲目地做一件事情是很难成功的,既然有方法给我们作为依据,我们就可以按照方法来做。

发布于 2022-09-28 22:26

免责声明:

本文由 kyszg 原创或收集发布于 火鲤鱼 ,著作权归作者所有,如有侵权可联系本站删除。

推荐内容

优化设计方法的分类及特点
优化设计的基本理论和特点
优化设计方法介绍及其选择
火鲤鱼 © 2024 专注小微企业服务 冀ICP备09002609号-8