双层同步变距共轴旋翼无人机的制作方法
本实用新型涉及无人机,更具体地说是指双层同步变距共轴旋翼无人机。
背景技术:
小型共轴双旋翼无人机是一种机动灵活、体积较小、定点悬停的无人飞行器,即可垂直起降又可手持式起降。此类无人机结构紧凑,稳定性较高,操纵和悬停效率较高,在军用单兵携带侦查和民用航空拍摄、空中监视等方面有着比较广泛的应用前景。
但是,现有共轴双旋翼无人机通常采用全差动或半差动两种旋翼变距机构。在全差动变距过程中,需要上下两层变距结构单独利用舵机控制实现稳定飞行,导致增加飞行控制系统复杂性,结构设计较为复杂,舵机数量增加同时增加无人机自身结构系统重量,增大消耗无用功率,大大降低无人机抗风性和不能挂载更重载荷,采用半差动变距机构即单层变距控制,此结构虽然结构复杂性降低但无人机飞行姿态控制稳定性不好,抗风性和定点悬停效果不理想。
因此,有必要设计一种新的无人机,实现双层变距无需单独采用舵机控制,减少舵机数量,可减轻机身设计重量,提高飞行效率和抗风效果。
技术实现要素:
本实用新型的目的在于克服现有技术的缺陷,提供双层同步变距共轴旋翼无人机。
为实现上述目的,本实用新型采用以下技术方案:双层同步变距共轴旋翼无人机,包括主轴、上旋翼组件、下旋翼组件以及变距组件,所述上旋翼组件、所述下旋翼组件以及所述变距组件分别连接于所述主轴上;所述上旋翼组件包括上旋翼变距结构以及上旋翼连接件,所述上旋翼变距结构与所述上旋翼连接件连接;所述下旋翼组件包括下旋翼变距结构以及下旋翼连接件,所述下旋翼变距结构与所述下旋翼连接件连接;所述变距组件包括动力源组、同步结构以及推杆,所述动力源组与所述推杆连接,所述推杆与所述上旋翼变距结构连接,所述上旋翼变距结构与所述下旋翼变距结构之间通过同步结构连接。
其进一步技术方案为:所述上旋翼变距结构包括上变距支架、上变距推杆、上倾转盘、上旋转倾转盘以及上动盘,所述上变距支架与所述主轴之间通过轴承连接,所述上旋翼连接件所述上变距支架连接;所述上倾转盘与所述上变距支架连接,所述上旋转倾转盘连接于所述上倾转盘外;所述上动盘连接于所述上旋转倾转盘的下方,所述上动盘分别与所述同步结构以及所述推杆连接;所述上旋转倾转盘与所述上旋翼连接件通过所述上变距推杆连接。
其进一步技术方案为:所述上变距支架上设有轴承孔,所述上倾转盘内侧连接有第一定位销,所述第一定位销插设在所述轴承孔内,所述上动盘通过轴承连接于所述上旋转倾转盘的下方。
其进一步技术方案为:所述上动盘的外壁上设有上定位螺杆以及上球头,所述上定位螺杆以及所述上球头分别与所述同步结构连接。
其进一步技术方案为:所述下旋翼变距结构包括下变距支架、下变距推杆、下倾转盘、下旋转倾转盘以及下动盘,所述下变距支架与所述主轴之间通过轴承连接,所述下旋翼连接件所述下变距支架连接;所述下倾转盘与所述下变距支架连接,所述下旋转倾转盘连接于所述下倾转盘外;所述下动盘连接于所述下旋转倾转盘的下方,所述下动盘与所述同步结构连接;所述下旋转倾转盘与所述下旋翼连接件通过所述下变距推杆连接。
其进一步技术方案为:所述下动盘的外壁上设有下定位螺杆以及下球头,所述下定位螺杆以及所述下球头分别与所述同步结构连接。
其进一步技术方案为:所述同步结构包括同步推杆以及限位支架,所述限位支架与所述主轴连接,所述同步推杆的上端与所述上球头连接,所述同步推杆的下端与所述下球头连接,所述限位支架上设有上限位槽以及下限位槽,所述上定位螺杆插设在所述上限位槽内,所述下定位螺杆插设在所述下限位槽内。
其进一步技术方案为:所述动力源组包括横滚舵机以及俯仰舵机,所述推杆的个数为两个,所述横滚舵机通过第一摆臂与其中一个所述推杆连接,所述俯仰舵机通过第二摆臂与另一个所述推杆连接。
其进一步技术方案为:所述上旋翼连接件的外端通过上浆夹连接有上旋翼;所述下旋翼连接件的外端通过下浆夹连接有下旋翼。
其进一步技术方案为:所述上旋翼连接件上设有第一球头,所述上旋转倾转盘的外侧壁上设有第二球头,所述上变距推杆的上端与所述第一球头连接,所述上变距推杆的下端与所述第二球头连接,且所述上动盘的外侧壁上设有连接块,所述推杆的上端与所述连接块连接。
本实用新型与现有技术相比的有益效果是:本实用新型通过设置上旋翼组件、下旋翼组件以及变距组件,由变距组件内的动力源组输出变距的动力,经过推杆作用于上旋翼变距结构后,驱动上旋翼进行变距,且通过同步结构由上旋翼变距结构带动下旋翼变距结构进行同步变距,实现双层变距无需单独采用舵机控制,减少舵机数量,可减轻机身设计重量,提高飞行效率和抗风效果。
下面结合附图和具体实施例对本实用新型作进一步描述。
附图说明
为了更清楚地说明本实用新型实施例技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本实用新型的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本实用新型具体实施例提供的双层同步变距共轴旋翼无人机的立体结构示意图;
图2为本实用新型具体实施例提供的双层同步变距共轴旋翼无人机的立体结构示意图(去除外壳);
图3为本实用新型具体实施例提供的上旋翼组件、下旋翼组件以及变距组件的立体结构示意图;
图4为本实用新型具体实施例提供的上旋翼组件、下旋翼组件以及变距组件的立体结构示意图(去除上旋翼和下旋翼);
图5为本实用新型具体实施例提供的上旋翼组件的立体结构示意图;
图6为本实用新型具体实施例提供的上旋翼组件的爆炸结构示意图;
图7为本实用新型具体实施例提供的下旋翼组件的立体结构示意图;
图8为本实用新型具体实施例提供的下旋翼组件的爆炸结构示意图;
图9为本实用新型具体实施例提供的变距组件的立体结构示意图。
具体实施方式
为了使本实用新型的目的、技术方案及优点更加清楚明白,下面结合附图和具体实施方式对本实用新型作进一步详细说明。
下面将结合本实用新型实施例中的附图,对本实用新型实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本实用新型一部分实施例,而不是全部的实施例。基于本实用新型中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本实用新型保护的范围。
在本实用新型的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”、“顺时针”、“逆时针”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本实用新型和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本实用新型的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本实用新型的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本实用新型中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本实用新型中的具体含义。
在本实用新型中,除非另有明确的规定和限定,第一特征在第二特征之“上”或之“下”可以包括第一和第二特征直接接触,也可以包括第一和第二特征不是直接接触而是通过它们之间的另外的特征接触。而且,第一特征在第二特征“之上”、“上方”和“上面”包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”包括第一特征在第二特征正下方和斜下方,或仅仅表示第一特征水平高度小于第二特征。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本实用新型的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不应理解为必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。此外,本领域的技术人员可以将本说明书中描述的不同实施例或示例进行结合和组合。
如图1~9所示的具体实施例,本实施例提供的双层同步变距共轴旋翼无人机,可以运用在双层变距共轴飞行器中,实现双层变距无需单独采用舵机控制,减少舵机数量,可减轻机身设计重量,提高飞行效率和抗风效果。
请参阅图1,上述的双层同步变距共轴旋翼无人机,包括主轴60、上旋翼组件、下旋翼组件以及变距组件,上旋翼组件、下旋翼组件以及变距组件分别连接于主轴60上;上旋翼组件包括上旋翼变距结构以及上旋翼连接件22,上旋翼变距结构与上旋翼连接件22连接;下旋翼组件包括下旋翼变距结构以及下旋翼连接件32,下旋翼变距结构与下旋翼连接件32连接;变距组件包括动力源组、同步结构以及推杆47,动力源组与推杆47连接,推杆47与上旋翼变距结构连接,上旋翼变距结构与下旋翼变距结构之间通过同步结构连接。
在本实施例中,上旋翼组件位于变距组件的上方,下旋翼组件位于变距组件的下方,且上旋翼组件和下旋翼组件的安装方向相反。
借助动力源组提供改变无人机姿态俯仰和横滚方向的动力,经过推杆47后作用于上旋翼变距结构,以使得与上旋翼变距结构连接的上旋翼连接件22发生俯仰和横滚方向的改变,而上旋翼连接件22则连接着上旋翼20,进而达到改变上旋翼20的俯仰和横滚方向,另外,由于下旋翼变距结构通过同步结构与上旋翼变距结构进行连接,也就是当上旋翼变距结构发生俯仰和横滚方向的改变时,下旋翼变距结构也会同步变距,从而实现仅用一个动力源组便可实现双层共轴旋翼无人机的同步变距,进而节省了动力源的个数。
在一实施例中,请参阅图2,上述的双层同步变距共轴旋翼无人机还包括外壳10、主支架12以及动力装置部件11,动力装置部件11包含供给电源的可充电电池以及电池支架;上述的主轴60连接于主支架12的上方,动力装置部件11连接于上述的主支架12的下方,且上述的上旋翼组件、下旋翼组件、变距组件、主支架12以及动力装置部件11分别置于外壳10的内部。
在一实施例中,请参阅图3至图5,上旋翼变距结构包括上变距支架21、上变距推杆26、上倾转盘27、上旋转倾转盘23以及上动盘24,上变距支架21与主轴60之间通过轴承连接,上旋翼连接件22上变距支架21连接;上倾转盘27与上变距支架21连接,上旋转倾转盘23连接于上倾转盘27外;上动盘24连接于上旋转倾转盘23的下方,上动盘24分别与同步结构以及推杆47连接;上旋转倾转盘23与上旋翼连接件22通过上变距推杆26连接。
具体地,上述的上旋翼连接件22上设有第一球头221,上述的上旋转倾转盘23的外侧壁上设有第二球头232,上述的上变距推杆26的上端与第一球头221连接,上变距推杆26的下端与第二球头232连接,且上动盘24的外侧壁上设有连接块241,上述的推杆47的上端与连接块241连接。
具体地,上述的上变距支架21呈中空状,主轴60插设在上变距支架21内,且主轴60的外侧壁与上变距支架21的内侧壁之间连接有轴承,以使得整个上旋翼变距结构可沿着主轴60转动,且上述的上旋翼连接件22也可沿着主轴60转动。
另外,上述的上旋翼变距结构还包括上旋翼电机25,该上旋翼电机25的定子与主轴60连接,该上旋翼电机25的转子与上旋翼变距结构连接,具体地,上旋翼电机25的转子与上变距支架21连接,且上旋翼电机25连接在主轴60的上端,通过上旋翼电机25提供动力,以使得上旋翼20沿着主轴60进行旋转,进行无人机的上升和下降。
在一实施例中,请参阅图6,上述的上旋翼连接件22通过定位螺纹销连接在所述上变距支架21的上侧轴承孔中,实现上变距支架21的转动带动上旋翼连接件22的转动。
在一实施例中,请参阅图6,上变距支架21上设有轴承孔,上倾转盘27内侧连接有第一定位销,第一定位销插设在轴承孔内,上动盘24通过轴承连接于上旋转倾转盘23的下方。
上倾转盘27通过第一定位销与上变距支架21的轴承孔连接,以实现上倾转盘27与上变距支架21的固定连接,当上变距支架21沿着主轴60转动时,该上倾转盘27也可以跟着转动。
在一实施例中,请参阅图6,上述的上旋转倾转盘23通过定位螺纹销与上倾转盘27连接,实现上倾转盘27与上旋转倾转盘23的固定连接,以使得当上倾转盘27沿着主轴60转动时,上旋转倾转盘23也会随着转动。
另外,上述的上旋转倾转盘23的下端朝下延伸,以形成上连接盘231,上述的上动盘24与上连接盘231连接,且上述的上动盘24与上连接盘231之间连接有轴承,可避免上旋转倾转盘23沿着主轴60转动时带动上连接盘231转动而导致上动盘24转动,上动盘24的静止不动也是为了避免在变距过程中出现旋转而导致同步变距失败。
在一实施例中,请参阅图6,上述的上动盘24的外壁上设有上定位螺杆243以及上球头242,上定位螺杆243以及上球头242分别与同步结构连接。当动力源组通过推杆47作用于上球头242,进而带动对上动盘24发生俯仰和横滚方向的变距时,也就是需要上旋翼20进行变距时,上动盘24会带动上连接盘231发生变距,进而由上连接盘231带动上旋转倾转盘23变距,上旋转倾转盘23带动上倾转盘27进行变距,通过上变距推杆26作用于上旋翼连接件22,从而达到上旋翼20变距的目的,且经过同步结构后,下旋翼变距结构也会随着发生变距,而上定位螺杆243则可以对上动盘24进行限位,避免上动盘24随着上连接盘231的转动进行高速转动。
在一实施例中,请参阅图3、图4、图7至图8,下旋翼变距结构包括下变距支架31、下变距推杆36、下倾转盘37、下旋转倾转盘33以及下动盘34,下变距支架31与主轴60之间通过轴承连接,下旋翼连接件32下变距支架31连接;下倾转盘37与下变距支架31连接,下旋转倾转盘33连接于下倾转盘37外;下动盘34连接于下旋转倾转盘33的下方,下动盘34与同步结构连接;下旋转倾转盘33与下旋翼连接件32通过下变距推杆36连接。
具体地,上述的下变距支架31呈中空状,主轴60插设在下变距支架31内,且主轴60的外侧壁与下变距支架31的内侧壁之间连接有轴承,以使得整个下旋翼变距结构可沿着主轴60转动,且上述的下旋翼连接件32也可沿着主轴60转动。
另外,上述的下旋翼变距结构还包括下旋翼电机35,该下旋翼电机35的定子与主轴60连接,该下旋翼电机35的转子与下旋翼变距结构连接,具体地,下旋翼电机35的转子与下变距支架31连接,且下旋翼电机35连接在主轴60的上端,通过下旋翼电机35提供动力,以使得下旋翼30沿着主轴60进行旋转,进行无人机的上升和下降。
在一实施例中,请参阅图8,上述的下旋翼连接件32通过定位螺纹销连接在所述下变距支架31的下侧轴承孔中,实现下变距支架31的转动带动下旋翼连接件32的转动。
在一实施例中,请参阅图8,下变距支架31上设有上轴承孔,下倾转盘37内侧连接有第二定位销,第二定位销插设在上轴承孔内,下动盘34通过轴承连接于下旋转倾转盘33的上方。
下倾转盘37通过第二定位销与下变距支架31的上轴承孔连接,以实现下倾转盘37与下变距支架31的固定连接,当下变距支架31沿着主轴60转动时,该下倾转盘37也可以跟着转动。
在一实施例中,请参阅图8,上述的下旋转倾转盘33通过定位螺纹销与下倾转盘37连接,实现下倾转盘37与下旋转倾转盘33的固定连接,以使得当下倾转盘37沿着主轴60转动时,下旋转倾转盘33也会随着转动。
另外,上述的下旋转倾转盘33的上端朝上延伸,以形成下连接盘331,上述的下动盘34与下连接盘331连接,且上述的下动盘34与下连接盘331之间连接有轴承,可避免下旋转倾转盘33沿着主轴60转动时带动下连接盘331转动而导致下动盘34转动,下动盘34的静止不动也是为了避免在变距过程中出现旋转而导致同步变距失败。
在一实施例中,请参阅图8,上述的下动盘34的外壁上设有下定位螺杆343以及下球头342,下定位螺杆343以及下球头342分别与同步结构连接。
当动力源组通过推杆47作用于上球头242,进而带动对上动盘24发生俯仰和横滚方向的变距时,也就是需要上旋翼20进行变距时,上动盘24会带动上连接盘231发生变距,进而由上连接盘231带动上旋转倾转盘23变距,上旋转倾转盘23带动上倾转盘27进行变距,通过上变距推杆26作用于上旋翼连接件22,从而达到上旋翼20变距的目的,且经过同步结构后,作用于下球头342,进而带动下动盘34发生俯仰和横滚方向的变距,下动盘34会带动下连接盘331发生变距,进而由下连接盘331带动下旋转倾转盘33变距,而下旋转倾转盘33带动下倾转盘37发生变距,且通过下变距推杆36作用于下旋翼连接件32,从而达到下旋翼30变距的目的。
在一实施例中,请参阅图9,上述的同步结构包括同步推杆40以及限位支架41,限位支架41与主轴60连接,同步推杆40的上端与上球头242连接,同步推杆40的下端与下球头342连接,限位支架41上设有上限位槽411以及下限位槽412,上定位螺杆243插设在上限位槽411内,下定位螺杆343插设在下限位槽412内。利用两组同步推杆40实现上旋翼20、下旋翼30的同步变距操作。限位支架41与下定位螺杆343和上定位螺杆243的配合关系,使上动盘24和下动盘34在变距过程中不随上旋翼变距结构和下旋翼变距结构的高速旋转而转动,以提升整个同步变距的准确性。
在一实施例中,上述的动力源组包括横滚舵机43以及俯仰舵机42,推杆47的个数为两个,横滚舵机43通过第一摆臂44与其中一个推杆47连接,俯仰舵机42通过第二摆臂与另一个推杆47连接。
横滚舵机43以及俯仰舵机42分别通过舵机安装座45与主轴60连接,另外,上述的限位支架41与舵机安装座45连接,另外,舵机安装座45的外端还连接有安装支架46,所述安装支架46与外壳10的内侧壁连接。
在一实施例中,请参阅图3至图8,上述的上旋翼连接件22的外端通过上浆夹50连接有上旋翼20;下旋翼连接件32的外端通过下浆夹70连接有下旋翼30。
上述的上浆夹50与上旋翼连接件22的外端通过销轴连接,以实现上旋翼20的向下折叠;下浆夹70与下旋翼连接件32的外端通过销轴连接,以实现下旋翼30的向下折叠。上旋翼20和下旋翼30在无人机飞行时张开,手持外壳10便可进行起降;当上旋翼20和下旋翼30折叠至桨叶紧贴外壳10,整个无人机展现为圆柱状结构,便于携带和运输。
在一实施例中,上旋翼电机25和下旋翼电机35均为单向旋转电机。其中,上旋翼20为正桨旋翼,下旋翼30为反桨旋翼。
另外,上述的外壳10内还连接有电调模块、飞控模块、动力电池、接收机电源转化模块和线缆;上述的外壳10上端还连接有gps天线,防止磁场干扰。
所述无人机工作过程首先由动力电池供电给各飞控模块,飞控模块上电,驱动上旋翼电机25和下旋翼电机35,通过磁感应原理带动电机转子转动,从而带动上旋翼20和下旋翼30转动。当所述无人机需要进行姿态和位置改变时,飞控模块发出指令驱,使横滚舵机43和俯仰舵机42输出轴微小转动,产生不同摆角,横滚舵机43和俯仰舵机42的摆动传递到对应的摆臂,并经过推杆47,作用于上动盘24,上动盘24会带动上连接盘231发生变距,进而由上连接盘231带动上旋转倾转盘23变距,上旋转倾转盘23带动上倾转盘27进行变距,通过上变距推杆26作用于上旋翼连接件22,从而达到上旋翼20变距的目的,且经过同步结构后,作用于下球头342,进而带动下动盘34发生俯仰和横滚方向的变距,下动盘34会带动下连接盘331发生变距,进而由下连接盘331带动下旋转倾转盘33变距,而下旋转倾转盘33带动下倾转盘37发生变距,且通过下变距推杆36作用于下旋翼连接件32,从而达到下旋翼30变距的目的,使上旋翼变距结构在转动的时候,产生一个沿上倾转盘27转动方向的一个周期变距,下旋翼变距结构在转动的时候,产生一个沿下倾转盘37转动方向的一个周期变距,进而控制无人机的横滚和俯仰,改变无人机飞行方向。
采用上下层同步变距的结构设计,不需要单独进行变距控制,使得采用舵机数量较少,只需要两个舵机的驱动控制即可实现无人机的横滚和俯仰姿态的改变,同时舵机数量少,可节约机身设计重量,大大提高飞行效率和抗风效果。同步变距的结构使得上下旋翼30的变距结构不会在旋翼的桨叶高速转动时空气产生散流和湍流现象产生,保证了无人机飞行更加的稳定性,做到高精度定点悬停。
动力源组输出横滚方向和俯仰方向改变的动力,带动推杆47移动,由推杆47带动上旋翼变距结构做出横滚方向和俯仰方向的转动,并通过同步结构带动下旋翼变距结构做出横滚方向和俯仰方向的转动,以使得上旋翼连接件22以及下旋翼连接件32同步变距。
上述的双层同步变距共轴旋翼无人机,通过设置上旋翼组件、下旋翼组件以及变距组件,由变距组件内的动力源组输出变距的动力,经过推杆47作用于上旋翼变距结构后,驱动上旋翼20进行变距,且通过同步结构由上旋翼变距结构带动下旋翼变距结构进行同步变距,实现双层变距无需单独采用舵机控制,减少舵机数量,可减轻机身设计重量,提高飞行效率和抗风效果。
上述仅以实施例来进一步说明本实用新型的技术内容,以便于读者更容易理解,但不代表本实用新型的实施方式仅限于此,任何依本实用新型所做的技术延伸或再创造,均受本实用新型的保护。本实用新型的保护范围以权利要求书为准。