时间复杂度的概念与计算方式

赚钱路上
赚钱路上 这家伙很懒,还没有设置简介...

0 人点赞了该文章 · 28 浏览

为了计算时间复杂度,我们通常会估计算法的操作单元数量,每个单元运行的时间都是相同的。因此,总运行时间和算法的操作单元数量最多相差一个常量系数。

相同大小的不同输入值仍可能造成算法的运行时间不同,因此我们通常使用算法的最坏情况复杂度,记为T(n),定义为任何大小的输入n所需的最大运行时间。另一种较少使用的方法是平均情况复杂度,通常有特别指定才会使用。时间复杂度可以用函数T(n) 的自然特性加以分类,举例来说,有着T(n) =O(n) 的算法被称作“线性时间算法”;而T(n) =O(M^n) 和M= O(T(n)) ,其中M≥n> 1 的算法被称作“指数时间算法”。

一个算法花费的时间与算法中语句的执行次数成正比例,哪个算法中语句执行次数多,它花费的时间就多。一个算法中的语句执行次数称为语句频度或时间频度。记为T(n)。

一般情况下,算法中基本操作重复执行的次数是问题规模n的某个函数,用T(n)表示,若有某个辅助函数f(n),使得当n趋近于无穷大时,T(n)/f (n)的极限值为不等于零的常数,则称f(n)是T(n)的同数量级函数。记作T(n)=O(f(n)),称O(f(n)) 为算法的渐进时间复杂度,简称时间复杂度。

在各种不同算法中,若算法中语句执行次数为一个常数,则时间复杂度为O(1),另外,在时间频度不相同时,时间复杂度有可能相同,如T(n)=n2+3n+4与T(n)=4n2+2n+1它们的频度不同,但时间复杂度相同,都为O(n2)。

时间频度

一个算法执行所耗费的时间,从理论上是不能算出来的,必须上机运行测试才能知道。但我们不可能也没有必要对每个算法都上机测试,只需知道哪个算法花费的时间多,哪个算法花费的时间少就可以了。并且一个算法花费的时间与算法中语句的执行次数成正比例,哪个算法中语句执行次数多,它花费的时间就多。一个算法中的语句执行次数称为语句频度或时间频度。记为T(n)。

常见算法的时间复杂度举例说明

1.常数阶O(1)

无论代码执行了多少行,只要是没有循环等复杂结构,那这个代码的时间复杂度就都是O(1)如:

int i = 1;int j = 2;++i;j++;int m = i + j;

上述代码在执行的时候,它消耗的时候并不随着某个变量的增长而增长,那么无论这类代码有多长,即使有几万几十万行,都可以用O(1)来表示它的时间复杂度。

2.对数阶O(logN)

int i = 1;while(i

从上面代码可以看到,在while循环里面,每次都将 i 乘以 2,乘完之后,i 距离 n 就越来越近了。我们试着求解一下,假设循环x次之后,i 就大于n了,此时这个循环就退出了,也就是说 2 的 x 次方等于 n,那么 x = log2^n也就是说当循环 log2^n 次以后,这个代码就结束了。因此这个代码的时间复杂度为:O(logn)

3.线性阶O(n)

for(i=1; i<=n; ++i){   j = i;   j++;}

这段代码,for循环里面的代码会执行n遍,因此它消耗的时间是随着n的变化而变化的,因此这类代码都可以用O(n)来表示它的时间复杂度。

4.线性对数阶O(nlogN)

线性对数阶O(nlogN) 其实非常容易理解,将时间复杂度为O(logn)的代码循环N遍的话,那么它的时间复杂度就是 n * O(logN),也就是了O(nlogN)。

就拿上面的代码加一点修改来举例:

for(m=1; m

5.平方阶O(n²)

平方阶O(n²) 就更容易理解了,如果把 O(n) 的代码再嵌套循环一遍,它的时间复杂度就是 O(n²) 了。举例:

for(x=1; i<=n; x++){   for(i=1; i<=n; i++)    {       j = i;       j++;    }}

小结:O(1) < O(logn) < O(n) < O(nlogn) < O(n^2)

发布于 2023-01-14 17:14

免责声明:

本文由 赚钱路上 原创或收集发布于 火鲤鱼 ,著作权归作者所有,如有侵权可联系本站删除。

火鲤鱼 © 2024 专注小微企业服务 冀ICP备09002609号-8