什么是卡尔曼滤波

南风
南风 这家伙很懒,还没有设置简介...

0 人点赞了该文章 · 22 浏览

 什么是卡尔曼滤波

  最佳线性滤波理论起源于40年代美国科学家Wiener和前苏联科学家Kолмогоров等人的研究工作,后人统称为维纳滤波理论。从理论上说,维纳滤波的最大缺点是必须用到无限过去的数据,不适用于实时处理。为了克服这一缺点,60年代Kalman把状态空间模型引入滤波理论,并导出了一套递推估计算法,后人称之为卡尔曼滤波理论。卡尔曼滤波是以最小均方误差为估计的最佳准则,来寻求一套递推估计的算法,其基本思想是:采用信号与噪声的状态空间模型,利用前一时刻地估计值和现时刻的观测值来更新对状态变量的估计,求出现时刻的估计值。它适合于实时处理和计算机运算。

  卡尔曼滤波的实质是由量测值重构系统的状态向量。它以“预测—实测—修正”的顺序递推,根据系统的量测值来消除随机干扰,再现系统的状态,或根据系统的量测值从被污染的系统中恢复系统的本来面目。

发布于 2023-01-29 21:29

免责声明:

本文由 南风 原创或收集发布于 火鲤鱼 ,著作权归作者所有,如有侵权可联系本站删除。

推荐内容

什么是卡尔曼滤波
卡尔曼滤波的形式
卡尔曼滤波特点
卡尔曼滤波案例分析
火鲤鱼 © 2025 专注小微企业服务 冀ICP备09002609号-8